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Abstract
Images are typically sampled on a uniform grid, despite
their non-uniform information distribution—some regions
are rich in content while others are not. The mismatch leads
to inefficient computation allocation in deep learning mod-
els. To address this, recent studies have proposed predictive
downsampling methods that adaptively downsample images
based on predicted per-pixel importance, allocating more pix-
els to informative areas. However, these methods require
high-resolution processing to accurately estimate importance,
which undermines their efficiency: the prediction itself must
process the full-resolution image, consuming most of the
computational budget. This high-resolution importance pre-
diction is necessary because each input may differ signifi-
cantly in structure and content. In this paper, we take a differ-
ent approach and introduce a learn-to-downsample paradigm
tailored for aligned vision recognition tasks, such as face
recognition and palmprint recognition, where input alignment
ensures consistent spatial structure across images. This align-
ment ensures structural consistency across images, allowing
a shared, input-agnostic downsampling template applicable
to all inputs. Furthermore, instead of relying on implicit im-
portance maps, we introduce a flow-based representation that
explicitly models the spatial warping from the original image
to the downsampled version. The flow representation is not
only more efficient but also more controllable: we regular-
ize the flow using its Jacobian determinant to precisely con-
trol the sampling density and coverage, enabling interpretable
and tunable sampling patterns. Extensive experiments on two
aligned recognition tasks, face and palmprint recognition,
demonstrate that our method substantially reduces computa-
tional cost with minimal accuracy degradation, achieving a
significantly better performance-efficiency trade-off than ex-
isting predictive downsampling methods.

Introduction
Images are typically uniformly sampled in the spatial do-
main, leading to a rectangular grid of pixels. Modern Deep
Learning (DL) architecutres, i.e. Convolutional Neural Net-
works (CNNs) (Krizhevsky, Sutskever, and Hinton 2012; He
et al. 2016) and Vision Transformers (ViTs) (Dosovitskiy
et al. 2021), are designed to process such uniformly sampled
pixels, and the computation is evenly allocated across the
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image. However, visual information is often not uniformly
distributed across the image, with some regions containing
more important features than others (Itti, Koch, and Niebur
2002; Bruce and Tsotsos 2009). The mismatch between uni-
formly sampled pixels and the non-uniform nature of visual
information leads to inefficient computation (Fayyaz et al.
2022), as the model allocates equal resources to both tex-
tureless regions and those rich in visual detail.

Recently, adaptive image sampling has attracted growing
interest due to its ability to adjust sampling density dynam-
ically based on image content (Recasens et al. 2018; Jin
et al. 2022). By assigning denser sampling to informative re-
gions and sparser sampling to less relevant areas, it produces
downsampled images of lower spatial resolution while pre-
serving critical visual details. This enables faster inference
and lower memory consumption without significantly com-
promising accuracy.

However, most existing methods follow the predictive
sampling paradigm, where the sampling density is deter-
mined by a sub-network conditioned on the input image.
Density prediction is necessary because the input images
present diverse structural content and therefore require dif-
ferent sampling patterns. To make accurate predictions,
the sub-network must process the full-resolution image,
which introduces significant computational overhead and
consumes a large portion of the total budget.

In most vision tasks, input images exhibit diverse and
unpredictable structural patterns. A notable exception is
aligned vision recognition, where inputs are geometrically
aligned and share similar structural content across samples.
Face recognition and palmprint recognition are two repre-
sentative examples of aligned vision recognition. In these
tasks, the input images are typically aligned to a canoni-
cal pose (Zhang et al. 2016; Zhao et al. 2022), to ensure
the recognition model focuses on the discriminative features
rather than the geometric variations. The consistent structure
of inputs in aligned vision recognition presents a unique op-
portunity: can we learn an input-independent sampling pat-
tern that generalizes across all inputs? Such a pattern would
enable downsampling without accessing the full-resolution
input, thereby eliminating the computational overhead asso-
ciated with image-dependent processing.

In this paper, we move beyond the conventional predic-
tive sampling paradigm and introduce a learned sampling

Published in the Proceedings of the AAAI Conference on Artificial Intelligence 2026

https://kaizhao.net/publications/zhao2026beyond.pdf

https://kaizhao.net/publications/zhao2026beyond.pdf


(a) (b) (c)

F

I
I

Is

Figure 1: Diagramatic comparison of (a) full image processing, (b) predictive sampling, and (c) learned sampling. Full image
processing requires the model to process the entire input image I, which is computationally expensive. Predictive sampling
predicts a sampling pattern based on the input image, but still requires processing the full-resolution image to estimate the
sampling density. Learned sampling uses a flow field F as a model parameter, which guides the downsampling process without
requiring access to the input image.

paradigm tailored for aligned vision recognition. Our key in-
sight is to exploit the consistent structural patterns present in
aligned images to learn a universal, input-independent sam-
pling strategy. Specifically, we learn a flow field to guide
downsampling without requiring access to the input at all.
This flow field is treated as a model parameter, independent
of the input, allowing efficient downsampling at the very be-
ginning of the network and greatly reducing computation
for subsequent layers. Fig 1 illustrates the difference be-
tween predictive sampling and our proposed learned sam-
pling paradigm.

Our method models downsampling as flow-guided image
warping, which explicitly maps the high-resolution input to
a compact representation. The sampling pattern is controlled
via the Jacobian determinant of the flow, enabling flexi-
ble and spatially aware resampling. We introduce Jacobian-
based regularization to ensure valid, topology-preserving
transformations and to promote compression in less infor-
mative regions. In summary, our contributions are:

• We propose a learned sampling paradigm for aligned vi-
sion recognition, which eliminates the need for input-
dependent processing and enables efficient downsam-
pling.

• We introduce a flow-based representation to model the
downsampling transformation, allowing more efficient
sampling and flexible control over the sampling pattern.

• We design a set of regularization terms based on the Ja-
cobian determinant to ensure valid transformations and
to encourage compression of sampled regions.

We evaluate our method on two aligned vision recog-
nition tasks: face recognition and palmprint recogni-
tion. Extensive experiments demonstrate that our approach
greatly reduces computational cost while maintaining com-
petitive recognition accuracy. Compared to predictive sam-
pling methods, our method achieves a better trade-off be-
tween performance and efficiency. These results suggest a
new paradigm for efficient image processing in aligned vi-
sion tasks, offering a principled and effective alternative to
dynamic, prediction-based downsampling approaches.

Related Work
Learning to spatially resample or zoom into salient regions
of visual data has long been studied as a means to im-
prove efficiency and accuracy. Early attention models used
dynamic glimpses to focus on informative parts of an im-
age (Mnih et al. 2014), demonstrating that not all input
pixels need equal processing. Spatial Transformer Networks
(Jaderberg et al. 2015) introduced a learnable module that
can apply global parametric transformations (e.g. cropping,
scaling, rotations) to input features, allowing a network to
automatically align or magnify important content.

Subsequent approaches explored differentiable resam-
pling strategies: Recasens et al. (Recasens et al. 2018) pro-
posed a saliency-based “Learning to Zoom” layer that learns
non-uniform downsampling, producing a distorted yet task-
enhancing image where informative regions are magnified.
Jin et al. (Jin et al. 2022) developed a learnable downsam-
pling module for ultra-high resolution segmentation, which
adaptively allocates higher sampling density to more com-
plex or uncertain image regions (e.g. around object bound-
aries) based on a low-res preview, yielding better segmen-
tation than uniform resizing. These methods perform input-
dependent resampling, often guided by saliency or learned
attention maps, to preserve critical details while reducing
resolution.

Similarly, adaptive focus mechanisms within network ar-
chitectures have been proposed. For example, Zhao et al.
(Zhao et al. 2025) present a “Boltzmann attention” scheme
in a transformer that dynamically narrows the attention field:
initially broad attention allows exploration, then an anneal-
ing process focuses it on likely object locations, greatly im-
proving small-object detection efficiency. Other works in
this vein include deformable convolutions (Dai et al. 2017),
which learn input-dependent sampling offsets for each con-
volution kernel, effectively attending to salient local fea-
tures.

The idea of allocating computation dynamically has also
been explored extensively in model architectures. In image
recognition, adaptive computation frameworks like MSD-
Net (Huang et al. 2018) use multi-scale features with early-
exit classifiers to allow “easier” examples to be processed at
lower cost, while harder ones receive deeper analysis. Skip-



Net (Wang et al. 2018) and BlockDrop (Wu et al. 2018)
learn to skip unnecessary ResNet blocks on a per-input ba-
sis via learned gating networks (sometimes using reinforce-
ment learning), reducing inference cost without sacrificing
accuracy. Similarly, Veit et al. (Veit and Belongie 2018) in-
troduce ConvNet-AIG, which inserts lightweight gates into
a CNN to conditionally bypass certain layers, effectively
learning a dynamic inference graph for each input. In natural
language processing, where model depths are even greater,
recent studies apply analogous ideas: Jiang et al. (Jiang et al.
2024) (D-LLM) add a decision module at each Transformer
layer to determine if that layer can be skipped for a given
token or sequence, significantly accelerating large language
model inference.

Our work differs from these in that we seek an input-
agnostic resampling grid optimized for aligned inputs (e.g.
faces or palms). Rather than predicting a different zooming
per image, we learn a single sampling pattern that consis-
tently captures the most informative regions across all in-
puts—providing a fixed, low-cost attention mechanism tai-
lored to our task.

Methodology
In this section, we present our proposed method for adaptive
image sampling for aligned vision recognition.

Overview
Our method learns a spatially adaptive flow field to resam-
ple the input image via image warping. This process en-
ables downsampling with unevenly spaced sampling points
and preserves critical visual content. Instead of relying on
fixed uniform sampling grids, we use a learnable flow field
to guide where pixels are sampled.

Let I ∈ Rh×w×3 denote the input image, where h and w
are the height and width. Let 0 < s < 1 be a user-defined
downsampling factor. We aim to generate a smaller image
Is ∈ Rh′×w′×3, where h′ = ⌈h · s⌉ and w′ = ⌈w · s⌉.
To resample the image, we introduce a learnable flow field
F ∈ Rh′×w′×2, which defines a 2D offset (or displacement)
vector at each location in the downsampled image Is. The
flow field is input-independent and is a parameter of the neu-
ral network.

Image Downsampling via Flow-guided Warping
Each pixel in the downsampled image Is(u, v) is computed
by warping the original image I using a learned flow vector
f⃗u,v = (fx

u,v, f
y
u,v):

Is(u, v) = I
(
u/s+ fx

u,v, v/s+ fy
u,v

)
, (1)

where the sampling location is generally non-integer and
evaluated via bilinear interpolation. When f⃗u,v = (0, 0) for
all (u, v), Eq (1) reduces to standard uniform downsampling
by a factor of s.

This formulation allows the model to learn non-uniform
sampling patterns that are adaptive to the task. Fig 2 illus-
trates how sampling locations are derived from the flow field
f⃗ , using a 3× 3 input image downsampled to a 2× 2 output
with a downsampling factor of s = 2/3.

I(1, 0) I(2, 0) Is(2, 0)
I(3, 0)

I(3, 0)

I(3, 1)

I(3, 2)
Is(2, 2)

Is(0, 0)
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Is(1, 1) =
I(1.5 + fx

1,1, 1.5 + fy
1,1)

f⃗1,1

Figure 2: Illustration of location sampling when warping a
3 × 3 image (yellow dotted grid) to a 2 × 2 image (black
solid grid) with a downsampling factor of s = 2/3. The
flow vector f⃗ (red arrows →) guides the sampling locations
in the original image I.

Regularization through Jacobian Determinant
To prevent the learned flow field F from producing erratic or
unstable sampling patterns, we introduce a set of regulariza-
tion terms that promote spatial coherence and geometric va-
lidity. Specifically, we encourage F to be smooth, globally
contractive, and diffeomorphic, ensuring that the resulting
warping is both stable and topology-preserving.

Diffeomorphism A diffeomorphism is a smooth and in-
vertible mapping whose inverse is also smooth; that is, it pre-
serves the topology of the space without any folding, tearing,
or inversion. In our context, this implies that the flow field
should maintain the spatial ordering of the sampling grid and
prevent any overlaps or pixel misalignments.

To ensure that the flow field F is diffeomorphic and does
not induce local folding or inversion, we incorporate the Ja-
cobian determinant1 as a regularization term. The Jacobian
determinant J ∈ Rh′×w′

of the flow field F is defined as:

J = det (I+∇F) , (2)

where I is the identity matrix and ∇F is the Jacobian matrix
of the flow field. Each element of J measures the local area
distortion caused by the flow field:
• J [i, j] > 1 indicates expansion of the local area,
• 0 < J [i, j] < 1 indicates shrinkage,
• J [i, j] = 0 indicates a fold or tear,
• J [i, j] < 0 indicates an inversion.

For example, if the flow F = 0, then Ji,j = 1 for all (i, j),
indicating no local deformation — that is, the transformation
preserves both area and spatial structure everywhere.

To prevent local folds or tears, we penalize all negative
values in J :

Ldiffeo =
∑
i,j

max(0,−Ji,j), (3)

1https://en.wikipedia.org/wiki/Jacobian matrix and
determinant



which encourages the flow field to be diffeomorphic.

Shrinkage In addition to enforcing local regularity via in-
dividual Jacobian determinants, we also penalize the global
average of J :

Lshrink =
∑
i,j

Ji,j . (4)

The average Jacobian in Eq (4) quantifies the net area
change induced by the flow field, measuring whether the
overall transformation is expanding or contracting the sam-
pling grid.

Since the input images often contain large textureless re-
gions— particularly in the background—this regularization
encourages the flow to globally shrink the sampling area,
effectively skipping uninformative regions.

By minimizing Eq (4), we promote flow fields that focus
sampling capacity on informative content while suppressing
the allocation of samples to unimportant areas.

Smoothness To ensure that the learned sampling grid is
spatially coherent, we introduce a smoothness regulariza-
tion term on the flow field. Specifically, we penalize both
the first-order gradients and second-order derivatives (Lapla-
cians) of the flow:

Lsmooth =
∑
i,j

∥∇f⃗i,j∥22 +
∑
i,j

∥∆f⃗i,j∥22, (5)

where ∇f⃗i,j denotes the spatial gradient at location (i, j) and
∆f⃗i,j denotes the Laplacian.

End-to-End Training
The sampling operation in Eq (1) and the regularization in
Eqs (3) to (5) are fully differentiable with respect to the flow
field F. Thus, we can jointly train the flow module and the
recognition network via backpropagation.

The overall training objective is:

L = Lrec + Lsmooth + Ldiffeo + Lshrink, (6)

where Lrec is the task-specific recognition loss, e.g., cross-
entropy for classification. This allows the flow field to adap-
tively learn task-relevant sampling patterns from data.

After training, the learned flow field F can be used to
downsample any aligned input image.

Experiments
Experimental Setup
We evaluate our method on two aligned vision recogni-
tion tasks: face recognition and palmprint recognition. In
both tasks, the models receive images that are geometrically
aligned to a canonical pose based on detected landmarks.

We compared our method against state-of-the-art adap-
tive sampling methods, including: (Recasens et al. 2018),
(Jin et al. 2022), and (Zhao et al. 2025). We also compared
against the baseline of uniform downsampling with bilinear
interpolation. For all downsampling methods, we apply the
same downsampling procedure to both training and test im-
ages, ensuring they are processed to the same resolution.

Running Efficiency
Before quantitative evaluation, we first compare the running
efficiency of different adaptive sampling methods. In partic-
ular, we compare our method with the baseline of uniform
downsampling and two predictive downsampling methods:
(Recasens et al. 2018) and (Jin et al. 2022).

We use a baseline input image size of 112 × 112, and
downsample the input to 56 × 56 and 84 × 84, 96 × 96 re-
spectively. The efficiency comparison does not rely on the
specific recognition task.

112 96 84 56
Uniform

5,525

6,675 7,322 11,969
(Recasens et al. 2018) 5,817 5,973 8,539

(Jin et al. 2022) 5,817 5,973 8,539
Ours 6,623 7,3,09 11,849

Table 1: FPS of different downsampling methods on a single
NVIDIA RTX 3090 GPU.

As demonstrated in Tab 1, our method achieves FPS on
par with the baseline of uniform downsampling, while being
notably faster than the other two adaptive sampling meth-
ods, thanks to the elimination of importance prediction and
the input-agnostic nature of our approach. (Recasens et al.
2018) and (Jin et al. 2022) require additional computation
to predict the importance of each pixel, which slows down
the process. Since the two methods share the same compu-
tation, and the only difference is the additional loss term in
(Jin et al. 2022), the FPS of the two methods are similar.

Face Recognition
Experimental Setup For face recognition, we use the
MS1MV2 (Deng et al. 2022) dataset as the training set. We
train various face recognition models and evaluate their per-
formance with different downsampling methods.

Following state-of-the-art methods (Li et al. 2021a; Meng
et al. 2021; Li et al. 2021b; Kim, Jain, and Liu 2022), we
report the face verification accuracy on seven benchmarks:
LFW (Huang et al. 2008), CFP-FP (Sengupta et al. 2016),
CPLFW (Zheng and Deng 2018), AgeDB (Moschoglou
et al. 2017), CALFW (Zheng, Deng, and Hu 2017), IJB-B
and IJB-C (Whitelam et al. 2017). LFW contains 6,000 pairs
of in-the-wild face images. CFP-FP and CPLFW have larger
pose variation (CFP-FP specifically compares frontal views
to profile views). AgeDB and CALFW have larger age vari-
ation.

The IJB-B dataset contains 1,845 subjects with 21.8K still
images and 55K frames from 7,011 videos. As the extension
of IJB-B, the IJB-C dataset cov- ers about 3,500 identities
with a total of 31,334 images and 117,542 unconstrained
video frames. In the 1:1 verification, the number of posi-
tive/negative matches are 10k/8M in IJB- B and 19k/15M in
IJB-C. We present the True Accept Rates (TARs) at False
Accept Rates (FAR) of 1e-6, 1e-5, and 1e-4, as detailed
in Tab 4.

Quantitative Results Tab 2 shows the face verification
accuracy on LFW, CFP-FP, CPLFW, and AgeDB datasets.
We observe that our method consistently outperforms the



Dataset DS SphereFace ArcFace MagFace
112 84 56 112 84 56 112 84 56

LFW

Uniform

99.67

92.19 84.56

99.81

92.44 85.16

99.83

92.51 85.20
(Recasens et al. 2018) 93.55 89.17 93.57 89.79 94.01 89.97

(Jin et al. 2022) 93.52 89.18 93.53 89.80 94.02 89.98
Ours 94.57 90.11 94.84 90.59 94.70 91.01

CFP-FP

Uniform

96.84

88.50 75.32

98.40

88.79 76.77

98.46

88.82 79.80
(Recasens et al. 2018) 90.09 79.76 89.12 78.45 89.12 78.45

(Jin et al. 2022) 89.31 78.84 89.21 78.98 89.12 78.45
Ours 89.71 80.45 90.12 80.45 90.95 80.45

CPLFW

Uniform

91.27

82.17 71.29

92.72

83.15 73.44

92.87

83.22 75.45
(Recasens et al. 2018) 84.10 73.55 85.14 76.38 85.92 78.45

(Jin et al. 2022) 84.29 73.41 86.00 73.74 86.17 78.17
Ours 85.25 77.54 86.15 78.44 87.22 78.85

AgeDB

Uniform

97.05

88.91 76.01

98.05

89.12 77.29

98.17

89.01 80.15
(Recasens et al. 2018) 90.11 81.29 91.32 80.46 91.27 82.95

(Jin et al. 2022) 90.25 80.91 90.87 80.25 91.52 83.21
Ours 90.72 81.51 91.44 81.29 92.12 84.15

Table 2: Face verification accuracy (%) on LFW, CFP-FP, CPLFW, and AgeDB datasets using different methods.

Dataset DS TAR@FAR 1e-6 TAR@FAR 1e-5 TAR@FAR 1e-4
112 84 56 112 84 56 112 84 56

CASIA
Uniform

91.86
85.14 79.17

94.07
87.11 78.20

95.86
89.54 83.39

(Recasens et al. 2018) 87.21 82.54 87.21 78.94 90.12 85.37
(Jin et al. 2022) 89.14 83.84 89.18 80.04 91.25 87.17

Ours 89.21 83.91 89.21 80.94 91.21 87.37

PolyU
Uniform

91.09
86.37 80.24

94.11
87.32 79.11

96.10
90.10 83.91

(Recasens et al. 2018) 89.21 82.54 87.92 79.31 90.12 85.37
(Jin et al. 2022) 90.14 83.17 87.85 79.55 91.25 86.17

Ours 90.37 84.19 89.21 80.94 91.12 87.37

TongJi
Uniform

92.19
87.46 81.18

95.81
86.11 73.20

97.24
87.62 81.39

(Recasens et al. 2018) 89.04 84.35 88.51 76.14 88.15 84.50
(Jin et al. 2022) 89.54 83.17 87.85 77.12 90.37 85.71

Ours 89.87 84.17 88.25 77.55 89.25 86.17

MPD
Uniform

39.40
34.19 31.28

52.97
47.11 41.20

59.60
56.31 51.20

(Recasens et al. 2018) 36.51 33.76 50.01 43.49 59.44 52.65
(Jin et al. 2022) 36.71 34.01 49.71 43.50 59.25 52.65

Ours 37.01 34.21 49.65 43.57 59.54 52.90

XJTU-UP
Uniform

63.57
57.82 51.25

71.24
68.81 63.34

82.12
78.59 66.39

(Recasens et al. 2018) 60.64 55.70 70.94 65.91 79.01 67.50
(Jin et al. 2022) 61.14 56.20 71.44 66.41 79.51 68.00

Ours 61.37 56.41 71.67 66.64 79.75 68.25

Table 3: Face verification accuracy (%) on LFW, CFP-FP, CPLFW, and AgeDB datasets using different methods. The best
results for each setting are highlighted in red.

baselines and other adaptive sampling methods across all
datasets. For example, on the LFW dataset, our method
achieves 94.57% accuracy with SphereFace, 94.84% with
ArcFace, and 94.70% with MagFace, surpassing the best re-
sults of 93.55%, 93.57%, and 94.01% from other methods.

Tab 4 presents the results on the IJB-B and IJB-C
datasets. On the IJB-B and IJB-C datasets, our method also
achieves the highest TARs at all FARs, demonstrating its ef-
fectiveness in adaptive sampling for face recognition. These
results indicate that our method can effectively learn to sam-
ple more discriminative regions in face images, leading to
improved recognition performance.

Palmprint Recognition

Experimental Setup For palmprint recognition, we fol-
low the setup in (Jin et al. 2025) and evaluate our method
on CASIA (Sun et al. 2005), PolyU (Zhang et al. 2003),
TongJi (Zhang et al. 2017), MPD (Zhang et al. 2020), and
XJTU-UP (Shao, Zhong, and Du 2020) datasets. We fol-
low a 1:1 training and testing protocol, where the model is
trained on half of the identities, and tested on the other half.
We augment the identities by flipping the palmprint images
horizontally, and resize them to 112×112 pixels. We refer
the readers to respect papers for details of these datasets.

We use the combo of ArcFace (Deng et al. 2022) loss
with a modified ResNet-50 (He et al. 2016) backbone that



Method Res DS FPS IJB-B (TAR@FAR) IJB-C (TAR@FAR)
1e-6 1e-5 1e-4 1e-6 1e-5 1e-4

Baseline (112×112) 5,525 39.40 73.58 89.19 68.86 83.33 91.77

Sp
he

re
Fa

ce

96
Uniform 6,675 35.51 69.89 86.11 63.28 79.13 88.57

(Recasens et al. 2018) 5,817 38.51 71.28 88.52 67.78 82.51 90.73
(Jin et al. 2022) 38.54 71.85 88.91 68.12 82.33 91.65

Ours 6,675 39.37 73.51 89.14 68.82 83.31 91.76

84
Uniform 7,322 33.15 71.31 87.33 64.86 76.87 85.76

(Recasens et al. 2018) 5,973 37.51 70.74 86.89 65.61 77.13 86.25
(Jin et al. 2022) 36.88 71.05 87.04 65.37 77.14 86.19

Ours 7,322 38.65 72.85 88.64 66.89 77.43 87.97

56
Uniform 11,969 29.37 62.59 79.80 56.32 67.36 72.97

(Recasens et al. 2018) 8,539 34.45 67.17 80.25 58.16 75.33 74.01
(Jin et al. 2022) 34.58 67.25 80.15 58.21 75.23 74.16

Ours 11,969 35.69 67.83 80.64 58.89 75.70 74.93
Baseline (112×112) 5,525 38.68 88.50 94.09 85.65 92.69 95.74

A
rc

Fa
ce

96
Uniform 6,675 38.68 84.50 90.09 82.65 90.69 92.83

(Recasens et al. 2018) 5,817 38.51 87.28 92.52 84.78 91.11 94.04
(Jin et al. 2022) 38.54 86.85 92.91 85.12 91.13 94.15

Ours 6,675 39.37 87.51 93.14 85.49 92.11 95.71

84
Uniform 7,322 32.15 71.31 87.33 68.86 80.87 88.76

(Recasens et al. 2018) 5,973 37.40 85.48 91.54 82.87 84.89 90.69
(Jin et al. 2022) 37.51 85.58 91.19 82.86 85.33 90.77

Ours 7,322 37.72 86.58 92.57 83.92 85.34 90.85

56
Ours 11,969 29.86 64.17 81.25 57.14 73.36 74.50

(Recasens et al. 2018) 8,539 34.50 70.17 85.25 65.16 77.33 79.01
(Jin et al. 2022) 34.23 70.25 85.15 65.21 77.23 79.42

Ours 11,969 35.12 71.63 86.72 67.50 78.45 80.01
Baseline (112×112) 5,525 42.32 90.36 94.51 90.24 94.08 95.97

M
ag

Fa
ce

96
Uniform 6,675 33.51 69.89 86.11 63.28 79.13 88.57

(Recasens et al. 2018) 5,817 38.51 71.28 91.52 67.78 82.51 93.73
(Jin et al. 2022) 38.54 71.85 91.91 68.12 82.33 94.65

Ours 6,675 39.37 73.51 94.14 88.82 93.31 95.16

84
Uniform 7,322 32.15 71.31 87.33 68.86 80.87 88.76

(Recasens et al. 2018) 5,973 39.40 73.58 89.19 86.17 86.33 89.72
(Jin et al. 2022) 39.40 73.58 88.19 86.28 85.79 90.10

Ours 7,322 38.65 72.85 92.64 86.89 86.43 90.97

56
Uniform 11,969 31.37 64.29 81.21 57.55 74.07 75.69

(Recasens et al. 2018) 8,539 35.45 67.17 89.25 69.16 83.83 87.01
(Jin et al. 2022) 35.58 67.25 89.15 68.77 83.93 86.76

Ours 11,969 36.81 67.75 89.79 69.71 83.70 87.93

Table 4: Face verification accuracy (%) on the IJB-B and IJB-C datasets, comparing different recognition models and down-
sampling (DS) methods. The best results for each resolution are highlighted in red.

is widely used in recent palmprint recognition works (Jin
et al. 2025, 2024; Zhao et al. 2022; Shen et al. 2023).

The performance is evaluated on each individual dataset
in terms of True Accept Rate (TAR) at False Accept Rate
(FAR) of 1e-6, 1e-5, and 1e-4.

Interpretability Study
In this section, we analyze the learned downsampling grids
and their effectiveness in focusing on discriminative regions
of the input images.

Learned Downsampling Grids Fig 3 visualizes the
learned downsampling grids (top) and warpped images (bot-
tom) for face (left) and palmprint (right) recognition tasks.

The learned grids adaptively focus on the discrimina-
tive regions of the input images. For face recognition, the
grids are denser around the eyes and nose, which are cru-

cial for identity discrimination. For palmprint recognition,
the grids are denser around the core of the palmprint, where
the unique features are located.

Jacobian Regularization To further analyze the learned
grids, we visualize the Jacobian determinants of the down-
sampling grids in Fig 4. The Jacobian determinant indicates
the local expansion or compression of the sampling grid.
Higher values indicate local expansion, leading to sparser
sampling in those regions. The model learns to compress the
sampling grid in the facial areas and sparse it in the back-
ground. This is particularly beneficial for face recognition,
as it allows the model to focus on the most discriminative
features while ignoring less relevant background informa-
tion.



Figure 3: Learned downsampling grids (top) and their cor-
responding warpped images (bottom) for face recognition
(left) and palmprint recognition (right). The face image is
from the synthetic DiGiFace dataset, and the palmprint im-
age is blurred for privacy.

0.25 0.50 0.75 1.00 1.25 1.50 1.75

Jacobian Determinant

Figure 4: Jacobian determinants of the learned downsam-
pling grids. Higher values indicate local expansion and thus
sparser sampling in those regions. The model learns to com-
press the sampling grid in the facial areas and sparse it in the
background.

Input-Dependent vs. Input-Independent
The key difference between our method and prior ap-
proaches (Recasens et al. 2018; Jin et al. 2022) lies in the
design of the downsampling grids. While previous methods
generate input-dependent grids predicted from each image,
our method learns a fixed, input-independent grid.

In recognition tasks, geometric alignment is essential
for learning transformation-invariant and identity-specific
features. Input-dependent sampling can disrupt this align-
ment, potentially degrading performance. This ablation
study evaluates both approaches—predictive downsampling
(input-dependent grids) and learn-to-downsample (input-

independent grids)— using our method and those from (Re-
casens et al. 2018) and (Jin et al. 2022). The former predicts
a unique grid per sample, while the latter learns a single grid
shared across the dataset.

Results in Tab 5 show that learn-to-downsample con-
sistently outperforms predictive downsampling across all
methods. This highlights the importance of maintaining con-
sistent image structure, which enables more robust, invariant
feature learning.

The results in Tab 5 also reveal that our flow-based rep-
resentation outperforms the importance maps used in (Re-
casens et al. 2018; Jin et al. 2022), as evidenced by the
higher TARs using both learn and predict downsampling.

Face Recognition (IJB-B dataset, 56× 56)
Method DS TAR@1e-6 TAR@1e-5 TAR@1e-4

Recasens Learn 34.56 70.75 85.42
Pred 34.50 70.17 85.25

Jin Learn 34.87 70.95 86.01
Pred 34.23 70.25 85.15

Ours Learn 35.12 71.63 86.72
Pred 34.70 71.18 86.17

Palmprint Recognition (CASIA dataset, 56× 56)

Recasens Learn 82.37 78.59 85.13
Pred 82.54 78.94 85.37

Jin Learn 83.79 79.67 86.98
Pred 83.84 80.04 87.17

Ours Learn 89.31 80.94 87.37
Pred 88.12 79.67 86.98

Table 5: Comparison of predictive and learn-to-downsample
methods. All images are downsampled to 56×56. Face
recognition is evaluated on the IJB-B dataset, and palm-
print recognition on the CASIA dataset. Predictive meth-
ods consistently outperforms learn-to-downsample methods,
and our method achieves the best performance in both cases.

Conclusion
In this paper, we introduced a novel learned sampling
paradigm for aligned vision recognition. Our method learns
a flow field to guide downsampling, which is input-
independent and can be treated as a model parameter. This
approach enables efficient downsampling without requiring
access to the input image, thereby significantly reducing
computational overhead. We demonstrated the effectiveness
of our method on two aligned vision recognition tasks: face
recognition and palmprint recognition. We believe that our
method opens up new possibilities for efficient and effective
image processing in aligned vision recognition tasks.
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