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Abstract camouflaged  object
segmentation (OVCOS) seeks to segment and classify

Open-vocabulary

camouflaged objects in arbitrary categories, presenting
unique challenges due to visual ambiguity and unseen
categories. Recent approaches typically adopt a two-
stage paradigm: they first segment objects, and then
classify the segmented regions using vision language
models (VLMs). However, such methods (i) suffer from
a domain gap caused by the mismatch between VLMSs’
full-image training and cropped-region inferencing, and
(ii) depend on generic segmentation models optimized
for well-delineated objects which are less effective
for camouflaged objects. Without explicit guidance,
generic segmentation models often overlook subtle
boundaries, leading to imprecise segmentation. In this
paper, we introduce a novel VLM-guided cascaded
framework to address these issues in OVCOS. For
segmentation, we leverage the segment anything model
(SAM), guided by the VLM. Our framework uses
VLM-derived features as explicit prompts to SAM,
effectively directing attention to camouflaged regions
and significantly improving localization accuracy. For
classification, we avoid the domain gap introduced
by hard cropping. Instead, we treat the segmentation
output as a soft spatial prior using the alpha channel.
This retains the full image context while providing
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precise spatial guidance, leading to more accurate and
context-aware classification of camouflaged objects.
The same VLM is shared between segmentation and
classification to ensure efficiency and semantic consistency.
Extensive experiments on both OVCOS and conventional
camouflaged object segmentation benchmarks demonstrate
the clear superiority of our method, highlighting the
effectiveness of leveraging rich VLM semantics for
both segmentation and classification of camouflaged
objects. Our code and models are open-sourced at
https://github.com/intcomp/camouflaged-vlim.
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objects; vision-language models (VLMs);
CLIP; segment anything model (SAM)

1 Introduction

Open-vocabulary camouflaged object segmentation
(OVCOS) is a challenging task that requires
segmenting and classifying camouflaged objects
which may belong to novel categories not seen
during training [1]. Compared to traditional
semantic segmentation [2-4], OVCOS faces additional
challenges because it requires recognizing novel
categories in visually ambiguous scenes, where
camouflage leads to low contrast, indistinct
boundaries, and high similarity between objects and
their backgrounds. These challenges are particularly
relevant in real-world applications such as medical
image analysis [5] and agricultural monitoring [6].
Several existing open-vocabulary segmentation
approaches [7-10] utilize vision-language models
(VLMs), e.g., CLIP [11], to directly classify each pixel
across the entire input image, thereby improving
semantic generalization. Such approaches use a

one-stage framework. However, VLMs are pre-trained
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for image-level understanding, creating a granularity
mismatch that hinders effective visual-semantic
alignment and limits semantic transfer, often leading
to suboptimal performance [12].

To bridge this gap, recent works [1, 12-15] first
perform class-agnostic segmentation and then classify
the segmented regions using VLMs. This pipeline
forms a two-stage framework. The decoupling of
segmentation and classification partially alleviates
the granularity mismatch [12]. However, in the
segmentation stage, (see Fig. 1(a)), many existing
approaches typically rely on generic segmentation

architectures [2, 12-15] to identify the target region.

These generic segmentation models are primarily
tailored for well-delineated objects and can fail to
generalize effectively to camouflaged scenarios, where
targets are subtle, indistinct, and visually embedded
in complex backgrounds. The lack of alignment
between the pretraining objectives and the demands
of camouflaged segmentation leads to imprecise
localization. In addition, most existing methods do
not incorporate explicit edge-awareness mechanisms,
which are crucial for accurately delineating objects
with weak or ambiguous boundaries.

Recent advanced foundation models such as
the segment anything model (SAM) [16] have
shown remarkable ability to generalize to various
segmentation tasks [17, 18], largely due to their ability
to perform prompt-guided segmentation. By using
prompts to specify target regions, SAM can adapt its

G —» MaskFormer i
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Fig. 1
(a) Generic segmentation models, such as MaskFormer, typically
operate directly on the input image without target-specific guidance,

and are primarily designed to segment salient foreground objects.

(b) Our segmentation model leverages vision-language embeddings
from CLIP as prompts to guide the SAM model, directing attention
to the camouflaged area.
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Different segmentation paradigms in two-stage OVCOS.

attention to user-defined areas, making it particularly
effective for specialized tasks such as camouflaged
object segmentation. To address the limitations
of generic segmentation architectures in handling
camouflaged objects with weak or ambiguous
boundaries, we propose an adapted SAM architecture
tailored for camouflaged object segmentation. See
Fig. 1(b). We integrate CLIP-derived visual and
textual embeddings as prompts into the SAM mask
decoder, providing task-specific semantic guidance
that enhances the ability of the model to focus on the
camouflaged targets. Additionally, we enhance the
mask decoder with conditional multi-way attention
and an edge-aware refinement module to improve
boundary precision, effectively handling the indistinct
contours characteristic of camouflage.

In the classification stage, most existing methods
crop the segmented regions for classification [1, 12, 13]
(see Fig. 2(a)), introducing a domain gap since CLIP
is pre-trained on full images. To mitigate the domain
gap, we adopt a region-aware classification strategy
that replaces hard cropping with a soft spatial prior
derived from the segmentation mask, applied via the
image’s alpha channel. Our approach preserves the
full image context while providing explicit spatial
guidance. The predicted segmentation mask serves
as a soft spatial prior and is fused with the input
image via a lightweight integration module before
being processed by the CLIP [11] image encoder. A
comparison between hard and soft spatial guidance is
presented in Fig. 2. Additionally, we fine-tune CLIP
using a multi-modal prompting strategy inspired
by Ref. [19], jointly optimizing both visual and
textual prompts. This enhances semantic alignment
and task-specific adaptability, enabling region-aware
classification without disrupting global semantics.

Building on these ingredients, we introduce
the cascaded open-vocabulary
understanding network (COCUS), a novel two-
stage framework for the OVCOS task that explicitly
decouples the process segmentation and
classification. In the first (segmentation) stage,
we use CLIP [11] to extract visual and textual

camouflaged

into

features. These features serve as prompts to the
SAM [16] for segmentation. This prompt-based
guidance allows SAM to focus more precisely on
camouflaged target regions, enhancing localization
in visually ambiguous scenes. In the second stage
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Fig. 2 Comparison of mask-guided classification strategies. (a) The
mask cropping strategy applies the segmentation mask to crop the
input image before feeding it into the CLIP image encoder. (b) Our
method fuses the segmentation mask with the original image for
region-aware classification while retaining full-image context.

(classification), the segmentation output serves
as spatial guidance to refine the integration with
the original image, allowing CLIP to perform
open-vocabulary classification with improved focus
on target regions. By disentangling segmentation
and classification, our method enables more accurate
semantic interpretation of camouflaged objects
through prompt-based guidance segmentation and
region-aware classification.

Extensive experiments on the OVCamo [1]
benchmark demonstrate the effectiveness of the
proposed framework for the OVCOS task. Compared
to the strong baseline OVCoser [1], we achieve
consistent improvements across all major evaluation
metrics, establishing a new state-of-the-art on this
challenging benchmark. Moreover, adapted SAM [16]
demonstrates strong performance on the conventional
COS task, confirming that CLIP-prompting and edge-
aware segmentation are effective in standard closed-
set scenarios. Besides, our method also shows strong
cross-domain generalization, achieving competitive

results on medical and agricultural datasets, further

highlighting its robustness and practical applicability.

In summary, the main contributions of this work are

as follows:

e We propose a novel two-stage framework for
OVCOS that explicitly decouples segmentation
and classification. Our approach employs a
prompt-guided segmentation model to generate
a mask, which serves as soft spatial guidance for
the classification stage while preserving full-image

context.
e We propose an adapted SAM as the segmentation
model, enhanced for camouflaged object

localization by injecting CLIP-derived textual
and visual embeddings as prompts. This design
provides rich semantic guidance that steers
attention toward visually ambiguous regions.
Furthermore, we improve the SAM’s mask
decoder with conditional multi-way attention and
edge-aware refinement, improving both spatial
accuracy and boundary delineation.

e Extensive the
benchmark demonstrate that our

OVCamo
method
achieves state-of-the-art performance. Moreover,
the adapted SAM exhibits strong generalization
on the conventional COS task, validating the
effectiveness of our framework in both open- and
closed-set camouflaged segmentation scenarios.

The remainder of this paper is organized as follows.

experiments on

Section 2 reviews recent advances in open-vocabulary
segmentation and camouflaged object understanding.
Section 3 presents the proposed framework, detailing
its cascaded design, CLIP fine-tuning pipeline
and adapted SAM segmentation model. Section 4
presents implementation details, including training
settings and architectural configurations, followed
by comprehensive experimental results and ablation
studies.

2 Related work

2.1 Vision-language models

Vision-language models (VLMs) are
that joint
representations by embedding both image and text
inputs in a shared semantic space. A seminal model
in this domain, CLIP [11], jointly learns image

neural

architectures learn visual-textual

and text representations via contrastive learning
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on large-scale web data, demonstrating strong
generalization across open-vocabulary tasks such
as object detection [20-23] and segmentation [7, 12—
15, 24-27]. However, basic CLIP often performs
poorly in downstream tasks without task-specific
adaptation. To address this limitation, researchers
have proposed a variety of fine-tuning approaches.
Alpha-CLIP [28]
attention to improve focus on semantically relevant
image regions. CoOp [29] and Co-CoOp [30] optimize

introduces spatially adaptive

textual prompts for better few-shot performance
and generalization, respectively. Visual prompt
tuning [31] further enhances adaptability by injecting
fine-grained prompts into the vision branch. To
overcome the limitations of single-modality tuning,
recent works [19, 32, 33] have adopted multi-modal
strategies. FGVP [33] learns patch-level visual
prompts to improve alignment across diverse tasks.
MaPLe [19] jointly tunes prompts in both visual
and textual encoders, preserving CLIP’s generality
while enabling task-specific adaptation. In this work,
we adopt a multi-modal prompt tuning framework
similar to MaPLe to fine-tune CLIP, enhancing
semantic alignment for OVCOS.

2.2 Camouflaged object segmentation

Camouflaged object segmentation has emerged as
a significant research focus in computer vision,
with the aim of segmenting objects that visually
blend into their surroundings. Unlike traditional
tasks such as salient object detection [34-38] and
semantic segmentation [39, 40], COS is inherently
more challenging due to low object-background
contrast, ambiguous boundaries, and high background
similarity. It holds practical value in domains such as
medical image analysis [5] and agricultural monitoring
[6]. COS is typically formulated as a class-agnostic
task, focusing on segmenting camouflaged regions
within complex visual scenes. Existing studies [5,
41-46] have demonstrated strong performance on
established datasets [5, 42, 47]. Recent advances have
introduced several SAM-based methods [16, 48, 49]
adapted for COS, which use prompt tuning and
architectural modifications to improve segmentation
performance in complex scenes.

2.3 Open-vocabulary camouflaged object

segmentation

Open-vocabulary camouflaged object segmentation is
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a specialized subtask of open-vocabulary segmentation,
to segment and recognize camouflaged objects
belonging to arbitrary textual categories. Open-
vocabulary segmentation aims to align visual and
textual representations in a shared embedding space,
enabling pixel-level segmentation for unseen or
novel categories. Early methods [50] used semantic
hierarchies and concept graphs to bridge word
concepts and semantic relations. With the rise
of VLMs like CLIP [11], recent open-vocabulary
segmentation methods have shifted toward leveraging
pretrained VLMs to directly connect visual regions
with text queries. These approaches follow one-stage
and two-stage paradigms. One-stage methods such as
MaskCLIP [14] adapt CLIP for segmentation without
additional training. SAN [24] enhances feature
representations via adapters. CAT-Seg [7] introduces
cost aggregation between image and text embeddings.
FC-CLIP [25] employs hierarchical feature fusion.
However, these methods often suffer from suboptimal
alignment due to CLIP’s image-level representations.
The two-stage methods address this by decoupling
segmentation and classification. For example, SimSeg
[12] uses a cascaded design with MaskFormer [2]
for class-agnostic mask generation and CLIP for
classification. OVSeg [15] fine-tunes CLIP on diverse
and noisy data to improve generalization. In Ref. [51],
a text-to-image diffusion model is employed for
mask generation. While these two-stage framework
methods work well on generic objects, they fall
short in camouflaged scenarios. OVCOS is especially
difficult because low contrast visuals, ambiguous
edges, and visually similar backgrounds all contribute
to degraded segmentation and classification results.
OVCoser [1] was the first to address this task by
combining a dedicated camouflaged segmentation
model with a CLIP-based classifier in a two-stage
pipeline. However, it relies on cropped inputs
for classification and does not fully exploit VLM
semantics in segmentation.

3 Method

3.1 Problem definition

Open-vocabulary camouflaged object segmentation
alms to segment and classify camouflaged objects
belonging to novel categories unseen during training.
Formally, let Cseen denote the set of categories
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available during training, and Cynseen represent the
disjoint set of target categories at inferencing time,
such that Cseen N Cunseen = @. Given an input image I
and novel class labels Cypseen, the model is required
to produce a segmentation mask M highlighting the
camouflaged object and predict its corresponding
class label § € Cunseen-

To address this task, we adopt a segment-and-
classify strategy. In the first stage, a class-agnostic
segmentation model localizes camouflaged regions
guided by visual and textual semantics. In the
second stage, a vision—language model performs open-
vocabulary classification by comparing the visual
representation of the segmented regions with textual
embeddings of the novel class labels, supporting
recognition in an open-set setting.

3.2 Overview

Fig. 3 illustrates the proposed two-stage framework
for OVCOS. During inferencing, the first stage
generates a class-agnostic camouflaged segmentation
mask, while the second stage performs open-
vocabulary classification based on the segmented
regions. We use the same CLIP model for both stages.
Our CLIP model accepts a triplet {I € RZxWx3,
M, text} as input, where I and M are image and
mask, and text is a description of the input, in the
format “a photo of <something>". The CLIP model
outputs visual and textual embeddings, F, and E},
which serve as prompts to guide segmentation in the
first stage and are used for similarity-based open-
vocabulary classification in the second stage. Notably,
to ensure a consistent input format across stages,
we use an all-one mask in the first stage, while in
the second stage, the predicted segmentation mask is
used as input.

In the first stage, as shown in Fig. 3(left), we
perform segmentation guided by textual and visual
embeddings. The inputs consist of an RGB image I €
REXWX3 and a set of class labels C = {e1,...,cen},
where N denotes the number of candidate classes.
They are processed by the CLIP [11] model to produce
a textual embedding F; and a visual embedding
FE, optimized for camouflaged object understanding.
These embeddings serve as prompts and, together
with the image I, are input into the adapted SAM
model to guide the prediction of a class-agnostic
camouflaged segmentation mask M € [0, 1JH#xWx1
effectively localizing the camouflaged object.

[worm]
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Fig. 3 Overview of the cascaded segment and classify framework.
In Stage 1, the adapted SAM model generates a class-agnostic
camouflaged segmentation mask using textual and visual embeddings
as prompts. In Stage 2, we use the generated segmentation mask to
enable region-aware open-vocabulary classification.

In the second stage (see Fig. 3(right)), we
perform open-vocabulary classification guided by
the segmented result. The inputs include the same
RGB image I and class labels Cypgeen from the first
stage, while the predicted segmentation mask M
which is used as an additional input to the CLIP
model, providing spatial guidance. These inputs are
processed by the CLIP model as stage one, which now
focuses more precisely on the localized object area.
The model then outputs a predicted class label §j €
Cunseen, identifying the category of the camouflaged
object. Let EN € RN¥*4 and E, € R be the
textual and visual embeddings, where d = 768 is the
feature dimension. We first calculate the similarity
scores S € RV:

S=E-(B,)" (1)

During training, we first fine-tune our CLIP [11]
model by optimizing learnable prompts in both
the language and vision branches to enhance its
sensitivity to camouflaged objects, with all encoder
parameters frozen. Figure 4 illustrates the fine-tuning
pipeline of our CLIP. After fine-tuning, we freeze
the CLIP model as a feature extractor and train the
SAM [16] using visual-textual features from CLIP as
prompts. The details of the CLIP fine-tuning process
are provided in Section 3.3, and the architecture of
the SAM is described in Section 3.4.

3.3 CLIP fine-tuning pipeline

We fine-tune the CLIP model using a multi-
modal prompting strategy to enhance its ability to
capture subtle semantic cues for camouflaged object
segmentation, as shown in Fig. 4. Our CLIP variant
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is a modified version of Alpha-CLIP [28]. Previous
prompting strategies in CLIP [11] typically operate
on the visual or textual modality. Language-only
prompt tuning methods [12, 29, 30] optimize learnable
prompts solely in the language branch, while visual-
only approaches [14, 15, 33] inject prompts exclusively
into the vision branch. In this work, we adopt a multi-
modal prompting strategy, following Ref. [19], which
jointly optimizes both textual and visual prompts to
enhance multi-modal alignment and better adapt to
task-specific objectives.

In particular, we append learnable textual prompts
P, to the language branch and generate the
corresponding visual prompts P,, which are produced
by conditioning on the textual prompts through an
MLP injector. The language and textual prompts
P, and P, are shown in Fig. 4(center). During
fine-tuning, only the textual prompts and injector
parameters are updated, while the rest of the CLIP
model remains frozen. This lightweight strategy
promotes efficient adaptation and enables improved
semantic alignment across modalities.

Next, we outline the fine-tuning pipeline of the
CLIP model. The fine-tuning pipeline begins with
the language branch, where the base class labels Cgeen
are formatted using the prompt template “A photo

ih) Trainable

Frozen

CLIP text
encoder

encoder

“A photo of the Conv
<cls> camouflaged
in the background.”
>
Base class Cseen
Alpha mask Input image

Fig. 4 CLIP fine-tuning pipeline. The language branch encodes
base class labels Cseen with a camouflage-specific prompt template
and learnable textual prompts P; to obtain textual embeddings EJN.
The vision branch fuses features from the input image and alpha
mask, combined with visual prompts P, injected via an MLP, and
passes them to the frozen CLIP image encoder to obtain the visual
embedding F,. Similarity scores S are computed by aligning E¥ and
E, in a shared space.
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of the <class> camouflaged in the background.” and
enriched with learnable textual prompts P;. These
are processed by the frozen CLIP text encoder to
produce textual embeddings E¥ € RVX768 where N
is the number of base classes.

Currently, in the vision branch, the input RGB
image I € REXW>3 i5 augmented with an auxiliary
alpha mask A € RE*WX1 The alpha mask A is
randomly selected as either the all-one mask A; or
the ground-truth segmentation mask Ay, each with
equal probability. This enables the CLIP model to
optionally accept a mask as input, defaulting to an
all-one matrix when no explicit mask is provided—for
example, during the first stage of segmentation.

The image I and the alpha mask A are separately
processed through dedicated convolutional layers,
e.g., AlphaConv and RGBConv in Fig. 4, to
extract modality-specific features, which are then
fused to form the visual representation. This fused
representation, along with the injected visual prompts
P, generated by a lightweight MLP-based injector, is
fed into the frozen CLIP image encoder to obtain the
visual embedding E, € R'*768,

Finally, the textual and visual embeddings are used
to compute the similarity score as defined in Eq. (1),
which is used to calculate a cross-entropy loss against
the ground-truth class labels.

3.4 Adapted SAM

We build upon SAM [16] to address the unique
challenges of COS. While SAM excels at general-
purpose segmentation, it struggles with the subtle
visual cues and semantic ambiguities inherent to
camouflaged objects. To overcome these limitations
(see Fig. 5(a)), we adapt SAM by incorporating
textual and visual embedding guidance and edge-
aware enhancements for improved segmentation.
Specifically, we integrate our fine-tuned CLIP
model with SAM to provide semantic context. The
CLIP model produces textual embeddings EY €
RNXT768 =3 visual embedding E, € R!X7%% and
similarity scores S € RV*!. These embeddings are
further processed by a prompt adapter, which projects

them into condition prompts P, € R2*256

, providing
high-level semantic guidance in the segmentation
pipeline.

In parallel, the SAM ViT encoder extracts image
features X € R64%64x256 from the input image. To

adapt SAM to camouflage-specific cues, we introduce
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(a) Adapted SAM for camouflaged object segmentation
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Fig. 5 Overview of the adapted SAM framework. (a) Adapted SAM for COS: Our fine-tuned CLIP provides textual embeddings EX, a visual
embedding E,, and similarity scores S, which are projected into condition prompts P. via a prompt adapter. Image features X extracted by an
SAM ViT encoder are refined by adapters. The mask decoder integrates X and P. to predict the segmentation mask M and edge map E,
enabling precise localization. (b) The prompt adapter selects the most relevant textual embedding based on S, and projects both E; and E,
into a unified condition space via lightweight MLPs to guide the decoder. (c¢) The adapted mask decoder combines image features X, condition
prompts P., and output tokens Tiokens t0 produce accurate masks and edge maps, improving segmentation of camouflaged scenes.

lightweight adapter modules that refine the image
features X while keeping the backbone frozen.

Finally, the refined image features X and condition
prompts P, are fused within a mask decoder, which
outputs a segmentation mask M € RI*XWX1 and
an edge map E € RH*WX1 The integration of
refined image features and condition prompts within
the decoder ensures accurate object localization and
precise boundary delineation.

The prompt adapter refines textual and visual
embeddings from our fine-tuned CLIP to generate
condition prompts for segmentation guidance, as
shown in Fig. 5(b). Given textual embeddings E}N =
{e},...,eN}, visual embedding E,, and similarity
scores S = {s1,...,sn}, the adapter selects the
textual embedding corresponding to the highest
similarity score:

i* = arg max s;, By =eél (2)

The selected textual embedding E; and visual
embedding FE, are projected into a shared 256-
dimensional condition space using lightweight MLP-
based injectors. The resulting condition prompts
Pc c R2><256
visual guidance to the segmentation mask decoder,

provide high-level semantic and

enhancing object localization and boundary accuracy.
Formally, this is written:

Pt = MLPtext (Et)a Pv = MLPvis(Ev) (3)
P, =[P, P,] € R>** (4)

where MLP4eyxt(+) and MLPyis(+) denote the projection
functions for textual and visual features, respectively.

We adapt the original SAM [16] mask decoder to
address the specific challenges of camouflaged object
segmentation by introducing semantic conditioning
and edge-aware enhancements. The modified decoder
integrates multi-level image features X, condition
prompts P., and output tokens Tiokens, including
mask tokens Tmask and an edge token Teqge, to
precisely localize objects and accurately refine
boundaries (see Fig. 5(c)).

We first apply two conditional multi-way
attention (CondWayAttn x 2) modules to model
the interactions between image features, condition
prompts, and tokens. Each block enables dense
these
components. Specifically, it includes image-to-token

bidirectional information flow between
and image-to-condition attention to incorporate
visual context, token-to-condition and token-to-image
attention to align output tokens with semantic
and spatial cues, and token self-attention and an
MLP layer to capture intra-token dependencies and
to perform feature transformation. The enhanced
outputs are computed as

X, Trnasic, Teage = CondWayAttn(X, Py, Tioken) (5)
The attention-enhanced features X are first

upsampled using a transposed convolution to restore
spatial resolution. To recover fine details, these
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features are fused with shallow image features Xghaiow
through a fusion block defined as
Xtusion = TConv(X)
+ Conv(ReLU (Norm (Conv(Xghatiow))))
(6)

The attention-enhanced mask and edge tokens are
then projected via task-specific MLPs. The coarse
segmentation mask is computed by element-wise
multiplication of the mask token with the upsampled
features

Meoarse = MLPs(Tinask) © TConv(X)  (7)

Similarly, the edge map is predicted by combining
the edge token with the fused feature map:

E= MLP(Tedge) O] Xfusion (8)

The final refined mask incorporates edge guidance
by multiplying the coarse mask by the edge map,
followed by residual addition:

Mﬁne = Mecoarse + (Mcoarse ® E) (9>

This edge-guided refinement enhances boundary
accuracy while preserving regional consistency,
effectively handling subtle
camouflaged structures. The effectiveness of this
module is evidenced by the ablation study in
Section 4.3.5.

For the loss function, we adopt two supervised
losses: a mask loss for segmentation and an edge loss
for boundary refinement.

Following Ref. [52], the predicted mask M is
rescaled to the input resolution and compared to the

low-contrast and

ground-truth mask G,,,. Supervision combines binary
cross-entropy (BCE) [53] and intersection-over-union
(IoU) losses [54]:
Cmask = Cbce<M7 Gm) + Eiou(Ma Gm) (10>
For edge estimation, we follow Ref. [1] and supervise
the predicted edge E against the ground-truth edge
G, using the Dice loss [55]:
»Cedge - Edice(Ea Ge) (11)
The overall objective function is defined as the
unweighted sum of the two losses:

L= Emask + ﬁedge (12)

4 Experiments

4.1 Implementation details

4.1.1 Datasets

We evaluated our method on two tasks: camouflaged
object segmentation (COS) and open-vocabulary
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COS (OVCOS). For the OVCOS task, all experiments
were conducted on the OVCamo [1] dataset, a
benchmark specifically designed for this setting.
It comprises 11,483 images sourced from various
publicly available datasets, covering 75 camouflaged
object categories embedded in complex natural scenes.
To enable open-vocabulary evaluation, the dataset
is divided into two disjoint subsets by category:
the training set Dirain includes 7713 images in 14
seen categories, while the test set Dy contains
3770 images in 61 unseen categories, following an
approximate 7:3 split.

For the COS task, we evaluated on three widely
used benchmarks: CAMO [47], COD10K [5], and
NC4K [42]. A total of 4040 images from CAMO
and COD10K were used for training. We conducted
our evaluation on the remaining images from these
datasets, as well as the entire NC4K set. Detailed
statistics for all datasets, including training/testing
splits, are presented in Table 1.

4.1.2  Fwvaluation metrics

To ensure fair and comprehensive evaluation of
OVCOS performance, we adopted a set of evaluation
metrics tailored for OVCOS, which are adapted
from those originally proposed for the camouflaged
scene understanding task [5, 56]. Specifically, we
use six metrics: class structure measure ¢S,,, class
weighted F-measure cFY, class mean absolute error
cMAE, class standard F-measure cF, class enhanced
alignment measure cE,,, and class intersection over
union cloU. These metrics are standard in the open-
vocabulary segmentation literature [7, 12, 15, 24,
25, 57|, jointly assessing classification accuracy and
segmentation quality for a balanced evaluation of
model performance.

For the COS task, we followed established
protocols [5] and adopted four commonly used
metrics: structure measure S, enhanced alignment
measure Fy, weighted F-measure Fg, and mean
absolute error MAE. The
structural and region-aware similarity between
predictions and ground truth, where higher values

first three evaluate

Table 1 Summary of datasets used for OVCOS and COS tasks

Dataset Task Total Train Test Categories
OVCamo OVCOS 11,483 7713 3770 75 (14/61)
CAMO COS 1250 1000 250 —
COD10K COS 5066 3040 2026 —
NC4K COS 4121 — 4121 —
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indicate better performance. Conversely, MAE
measures pixel-wise error, with lower values indicating
better accuracy.

4.1.8  Training details

We carried out all experiments on a workstation
equipped with two NVIDIA RTX 3090Ti GPUs, using
Ubuntu 20.04. Our framework was implemented in
PyTorch and used CUDA 11.8 for GPU acceleration.

During CLIP model fine-tuning, we adopted a
multi-modal prompting strategy on the pre-trained
ViT-L/14 Alpha-CLIP model [28]. The model was
trained on the OVCamo [1] dataset for 10 epochs
using stochastic gradient descent (SGD) with a
learning rate of 0.0035 and a batch size of 8 on a single
GPU, following the setup in Ref. [19]. Additionally,
the input alpha mask was randomly selected as either
an all-one mask or the ground-truth segmentation
mask with equal probability, balancing global context

encoding and localized focus.

N .

e A “
»
s

hedgehog [gt]

.

hedgehog [V']

hedgehog [V']

/ g 2 ) “
y iy 24N
S 3 3
L
b, 4 it

scorpionfish [v']  squirrel [v]

CAT-Seg OVCoser Ours

SAN

hedgehog [V] mocklngblrd [X] scorpionfish [v]

During adapted SAM training, the fine-tuned CLIP
was integrated into our adapted SAM architecture,
based on the ViT-H variant of SAM [16]. The network
was trained for 20 epochs using the Adam optimizer
with an initial learning rate of 2 x 10™%, and decayed
by cosine annealing. Training was conducted on two
GPUs with a batch size of 2 and completed in
approximately 24 h.

4.2 Comparison to the state-of-the-art

In this section, we compare our method to state-of-
the-art approaches on both OVCOS and COS tasks,
providing qualitative, quantitative, and efficiency
comparisons.

4.2.1  Qualitative comparisons on OVCOS

We first present sample open-vocabulary camouflaged
object segmentation and classification results using
the OVCamo [1] dataset in Fig. 6, Our method
consistently delivers superior segmentation quality,

jerboa [gt]

4

-

jerboa [v]

cat [V] deer [X¥] ant[\/]

Fig. 6 Qualitative comparison between our method and CLIP-based baselines on OVCamo. Columns depicts input images with segmentation
result and predicted label. The predicted label is shown below each segmentation result, where [v] indicates correct prediction, and [X] denotes

an incorrect one.
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accurately delineating camouflaged objects with well-
preserved shapes and precise boundaries—even in
low-contrast settings with cluttered backgrounds.
Compared to other methods, our approach better
maintains object integrity and minimizes background
leakage, demonstrating enhanced robustness in
camouflage scenarios.

In terms of classification, our method reliably
predicts correct categories across diverse samples,
outperforming prior methods that often misclassify
visually ambiguous targets. This classification
accuracy improvement stems from our region-aware
classification strategy, which integrates segmentation
masks as alpha masks into the fine-tuned CLIP model.
Combined with multi-modal prompting and edge-
aware decoding, our method achieves accuracy of both
localization and recognition under open-vocabulary
conditions.

4.2.2  Quantitative comparisons on OVCOS

To thoroughly evaluate the effectiveness of our
proposed framework, we compared it to recent state-
of-the-art open-vocabulary segmentation methods,
including CAT-Seg [7], SAN [24], SimSeg [12],
OVSeg [15], FC-CLIP [25], ODISE [51], and
the baseline OVCoser [1]. For a fair comparison,
all models were trained or fine-tuned on the
OVCamo [1] dataset. We adopted the large
variants of such approaches wherever available,
except for SimSeg, which is only released in
its base form. As Table 2 shows, our method
consistently outperforms all competitors across
multiple evaluation metrics. Table 2 summarizes
quantitative results on the OVCamo [1] dataset.
While open-vocabulary segmentation methods such
as SAN [24], OVSeg [15], and CAT-Seg [7] benefit
from large-scale pretraining, they lack task-specific
adaptation, resulting in limited performance on

OVCOS (e.g., OVSeg: 0.164 ¢S,,, 0.123 cloU).
The baseline OVCoser [1] improves results by
integrating camouflage segmentation with CLIP-
based classification, achieving 0.579 ¢S,,, and 0.443
cloU, but it does not fine-tune vision-language
embeddings or incorporate semantic guidance into
segmentation.

Unlike existing methods, our framework leverages
fine-tuned CLIP and a task-adapted SAM to enhance
both segmentation and classification. It achieves state-
of-the-art results, surpassing the baseline OVCoser
[1] by notable margins across all metrics: +8.9%
in ¢S, +12.5% in cloU, +12.5% in cFy, +11.1%
in cFg, +8.1% in cE,,, and a reduction of 7.1%
in cMAE. These results highlight the effectiveness
of our cascaded design and cross-modal semantic
conditioning in tackling the OVCOS challenge.

4.2.8  Quantitative comparisons on COS

As Table 3 shows, our adapted SAM model achieves
competitive performance across three widely used
COS benchmarks: CAMO [47], COD10K [5], and
NC4K [42]. Compared to both traditional non-
SAM-based methods [5, 41-46] and recent SAM-
based approaches [16, 48, 49], our model consistently
outperforms others across all datasets.

Specifically, the adapted SAM ranks first on 11
out of 12 evaluation metrics and second on the
remaining one, demonstrating strong generalization
and robustness in diverse camouflage scenarios. Our
method achieves notable improvements in structure-
aware metrics (Sq, Ey), region-aware precision (Fy),
and pixel-level accuracy (MAE), particularly on
the COD10K and NC4K datasets. These results
highlight the effectiveness of our edge-enhanced
architecture and prompt-guided segmentation in
capturing fine-grained boundaries and ensuring
semantic consistency.

Table 2 Comparison of our method to state-of-the-art CLIP-based OVCOS approaches on the OVCamo dataset. Bold values indicate the
results of our method, which achieves the best overall performance. The second best is underlined

Model VLM Train set Fine tune cSm 1 CF;_}U 0 cMAE | cFg T cE, T cloU 1
SimSeg CLIP-ViT-B/16 COCO-Stuff OVCamo 0.098 0.071 0.852 0.081 0.128 0.0
OVSeg CLIP-ViT-L/14 COCO-Stuff OVCamo 0.164 0.131 0.763 0.147 0.208 0.123
ODISE CLIP-ViT-L/14 COCO-Stuff OVCamo 0.182 0.125 0.691 0.219 0.309 0.189
SAN CLIP-ViT-L/14 COCO-Stuff OVCamo 0.321 0.216 0.550 0.236 0.331 0.204
FC-CLIP CLIP-ConvNeXt-L COCO-Stuff OVCamo 0.124 0.074 0.798 0.088 0.162 0.072
CAT-Seg CLIP-ViT-L/14 COCO-Stuff OVCamo 0.185 0.094 0.702 0.110 0.185 0.088
OVCoser CLIP-ConvNeXt-L OVCamo — 0.579 0.490 0.336 0.520 0.616 0.443
Ours Our Fine-Tuned CLIP OVCamo — 0.668 0.615 0.265 0.631 0.697 0.568
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Table 3 COS performance on CAMO, COD10K, and NC4K datasets. The best performance per metric is highlighted in bold, and the second

best is underlined

Method CAMO COD10K NC4K

Sat  Est  F§t MAE| | Sat Byt  Fyt MAE] | Sat  E,1  F§t MAE|
SINet 0751  0.771  0.606 0.100 0.771  0.806  0.551 0.051 0.808  0.883  0.768 0.058
RankNet 0712 0791  0.583 0.104 0767  0.861  0.611 0.045 0.840  0.904  0.802 0.048
PFNet 0.782  0.852  0.695 0.085 0.800  0.868  0.660  0.040 0.829 0887 0784  0.053
SINetV2 0.820  0.882  0.743 0.070 0.815  0.887  0.680  0.037 0.847  0.903  0.770 0.048
ZoomNet 0.820  0.892  0.752 0.066 0.838 0911 0729  0.029 0.853 0912  0.784 0.043
SegMaR 0.815  0.872  0.742 0.071 0.833  0.895  0.724  0.033 0.841 0905  0.781 0.046
DGNet 0.839  0.901  0.769 0.057 0.822  0.896  0.693  0.033 0.857 0911 0784  0.042
SAM 0.684  0.687  0.606 0.132 0.783  0.798  0.701 0.050 0.767  0.776  0.696 0.078
SAM-Adapter | 0.847  0.873  0.765 0.070 0.883  0.918  0.801 0.025 — — — —
MedSAM 0.820 0.904 0.779  0.065 | 0.841 0917  0.751 0.033 0.866  0.929  0.821 0.041
Ours 0.865 0.902 0.789  0.057 | 0.905 0.947 0.845 0.019 | 0.904 0.933 0.852  0.031

4.2.4  Model size and runtime

We compare inferencing time and memory usage of
models in Table 4, with results reported per image on
a single NVIDIA RTX 3090 Ti (24 GB). Our method
is efficient: SAM-ViT-B requires only 240 ms and 9.8
GB, offering a favorable balance of speed and accuracy.
Larger backbones (SAM-ViT-L/H) deliver further
performance gains at the expense of runtime and
memory, enabling flexible trade-offs under different
resource constraints.

As Table 5 shows, even the lightweight SAM-
ViT-B already surpasses the baseline OVCoser [1],
while SAM-ViT-H achieves the best overall results.

Table 4 Comparison of inferencing time and memory requirement
of different models. Inferencing time measured with batch size = 1 on
a single NVIDIA RTX 3090 Ti (24 GB)

Model Backbone Time (ms) Mem (GB)
SimSeg ResNet101 350 6.5
OVSeg Swin-B 980 15.2
ODISE StableDiffusion 860 16.8
SAN ViT Adapter 160 5.4
CAT-Seg Swin-B 140 4.8
FC-CLIP CLIP-CvNeXt-L 210 7.2
OVCoser CLIP-CvNeXt-L 125 3.9
Ours SAM-ViT-B 240 9.8
Ours SAM-ViT-L 370 13.5
Ours SAM-ViT-H 530 19.7

This confirms that our method scales effectively,
adapting to both efficiency-critical and accuracy-
oriented applications.

4.3 Ablation and related studies
4.8.1 Effectiveness of the fine-tuned CLIP

To evaluate the effectiveness of our fine-tuned CLIP,
we first compared different VLMs under multiple
cropping strategies.

Table 6 presents the results for CLIP-ConvNeXt-L
[58], CLIP-ViT-L/14 [11], Alpha-CLIP [28], and our
fine-tuned CLIP. For the same backbone, replacing
full-image classification with hard cropping degrades
performance, underscoring the mismatch between
full-image pretraining and cropped inference [1]. Our
fine-tuned CLIP with soft cropping achieves the
strongest results across all metrics, for all settings,
demonstrating that the soft prior effectively mitigates
the mismatch while further benefiting from the
enhanced semantic representations learned during
fine-tuning.

To verify the classification performance of our
fine-tuned CLIP, we tested our CLIP with both all
one and ground-truth masks as the soft prior on
the OVCamo [1] test set. The results in Table 7
clearly show that our method enhances classification
accuracy in both the all-one and gt settings. These

Table 5 Performance comparison with different backbones, showing that even the lightweight SAM-ViT-B achieves significant gains over

OVCoser while maintaining low computational cost

Model Backbone cSm T cFé“ T cMAE | cFg 1 cEm T cloU 1
OVCoser CLIP-ConvNeXt-L 0.579 0.490 0.336 0.520 0.616 0.443
Ours SAM-ViT-B 0.614 0.519 0.278 0.552 0.650 0.461
Ours SAM-ViT-L 0.659 0.600 0.267 0.614 0.691 0.549
Ours SAM-ViT-H 0.668 0.615 0.265 0.631 0.697 0.568

M %/‘ % tﬂﬁﬁﬁ‘i Available on

IEEE Xplore®

Tsinghua University Press



12

K. Zhao, W. Yuan, Z. Wang, et al.

Table 6 Ablation study on mask cropping strategies for VLM-based OVCOS. Full-image uses the entire image for classification without
cropping. Hard cropping directly removes surrounding context using the segmentation mask, while soft cropping blends the segmentation mask
with the original image, preserving contextual cues

Model VLM Crop cSm T cF[g" T c¢cMAE | cFg 1 cEm 1 cloU 1
COCUS CLIP-ConvNeXt-L Full-image 0.573 0.524 0.365 0.544 0.607 0.495
COCUS CLIP-ConvNeXt-L Hard 0.567 0.518 0.375 0.534 0.591 0.481
COCUS CLIP-ViT-L/14 Full-image 0.591 0.545 0.343 0.562 0.629 0.515
COCUS CLIP-ViT-L/14 Hard 0.580 0.536 0.353 0.551 0.617 0.503
COCUS Alpha-CLIP Soft 0.639 0.589 0.299 0.603 0.668 0.545
COCUS Our fine-tuned CLIP Soft 0.668 0.615 0.265 0.631 0.697 0.568

Table 7 Classification performance of different CLIP models on the

OVCamo test set

Table 9 Comparison of generic and camouflage-specific prompt
templates for the fine-tuned CLIP

Model Alpha Top-11 Top-51 Model Prompt template Top-11
CLIP-ConvNeXt-L — 0.6944 0.8918 Fine-tuned CLIP | A photo of a <cls>. 0.7762
CLIP-ViT-L/14 o 0.7040 0.8915 . A photo of the <cls> camouflaged
Alpha-CLIP all one 0.6934 0.8849 Fine-tuned CLIP | 4 4} hackeround. 0.7859
Alpha-CLIP gt 0.7467 0.9456
Ours all one 0.7462 0.9003 . .

.3.4 Benefit of the two-stage pipeline
Ours gt 0.7859 0.9497 4 4 'ﬁ f ge pp

results highlight the effectiveness of task-specific
CLIP fine-tuning, while maximizing performance
when reliable masks are available.

4.8.2  Alpha mask selection probability

We conducted a study to evaluate the impact of
the selection probability P between all-one and gt
masks during CLIP fine-tuning. From Table 8, we
observe that the choice of P has minimal effect on the
performance metrics across the board. The results are
relatively stable across all values of P, with P = 0.5
achieving the best performance in all metrics. Based
on these results, we adopted P = 0.5 as the default
configuration in our framework.

4.8.83 Impact of different text templates

We conducted additional experiments to evaluate
the impact of different text prompt templates on
classification performance. Specifically, we compared
a generic prompt: “A photo of a <cls>.” with our
proposed camouflage-specific prompt: “A photo of the
<cls> camouflaged in the background.”. As Table 9
shows, the camouflage-specific template consistently
outperformed the generic one.

Table 8 Effect of selection probability P between all-one and gt
masks during CLIP fine-tuning

We tested the effectiveness of the two-stage
segmentation + classification pipeline by comparing
it to a single-stage pipeline that performs both
tasks simultaneously. See Table 10. The metrics:
cSm, cFy, cMAE, cFg, cE,, and cloU, reflect
both segmentation quality and classification accuracy.
Compared to the one-stage pipeline, the two-stage
pipeline consistently achieves higher performance
across all metrics. These results demonstrate that,
though the two-stage framework might accumulate
errors, its overall benefits outweigh the drawbacks.

4.8.5 Impact of the adapted mask decoder

In Table 11, we report ablation studies on the
OVCamo [1] dataset to assess the effectiveness of
the proposed conditional multi-way attention (CMA)
and edge enhancement (EDE) modules in our adapted
mask decoder. The baseline is built upon SAM
[16] with a lightweight adapter, corresponding to
the original SAM mask decoder without either

Table 10 Comparison of one-stage and two-stage pipelines

Pipeline cSm T ch’ T cMAE| c¢Fg?t cEntT cloU?T
One stage | 0.657  0.605 0.274 0.615  0.685 0.554
Two stage | 0.668 0.615 0.265 0.631 0.697 0.568

Table 11 Ablation study on conditional multi-way attention (CMA)
and edge enhancement (EDE) in the adapted mask decoder

P cSm 1T cF;i," T cMAE] c¢Fgt cEntT  cdoU?
0.00 | 0659  0.607  0.266 0624 0688  0.559 Model | cSm T cFgt cMAE] cFgt cEmT cloUT
025 | 0.660  0.610 0.266 0.619  0.690  0.558 Baseline | 0.644 0599 ~ 0.281 ~ 0.610 0.651  0.549
0.50 | 0.668 0.615 0.265 0.631 0.697 0.568 + EDE | 0.650  0.605 0.278 0.615  0.666  0.554
0.75 | 0.663 0611 0.267 0.621  0.693  0.560 + CMA | 0652 0607 0273 0621 0.683 0.551
1.00 | 0.661  0.611 0.268 0.623  0.691  0.561 Ours 0.668 0.615 0.265 0.631 0.697 0.568
S N N N Available on
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enhancement. Despite its simplicity, the baseline
delivers strong performance due to two key factors:
(i) SAM provides powerful, pre-trained feature
representations on large and diverse data, offering
robust and generalizable priors, and (ii) our two-
stage design enables even a lightweight adapter to
effectively exploit these priors.

Based on the strong baseline, our method further
improves the performance by near 10% in cMAE and
¢Sp,. Specifically, adding the EDE module (+ EDE)
leads to notable gains in contour-sensitive metrics
such as cFjg’ and cloU, indicating that explicit edge
modeling enhances boundary precision. In contrast,
introducing the CMA module (+ CMA) results in
stronger improvements in semantic-aware metrics
like cE,, and cFj, demonstrating that conditional
attention effectively enriches textual-visual feature
fusion.

When both modules are combined, our method
achieves the best performance across all metrics,
underscoring the complementary strengths of
semantic conditioning and edge-aware refinement.
These findings confirm the importance of both
enhancements in improving segmentation quality for
challenging camouflaged object scenarios.

4.8.6  Sensitivity of classification to mask quality

The segmentation mask of the first stage serves as a
soft prior for the second-stage classification. To assess
the sensitivity of classification to mask quality, we
simulated erroneous segmentation masks by applying
morphological operations to a correctly predicted
mask. Specifically, the predicted segmentation mask
was dilated and eroded by a certain number of pixels,
generating expanded and shrunk variants. These
simulated erroneous masks were used as the soft prior
in the second-stage classification. We demonstrate
an example in Fig. 7, and summarize quantitative
results in Fig. 8.

In Fig. 7, the dilated mask (top row) still preserved
most of the camouflaged target, enabling correct
classification (scorpionfish). However, the eroded
mask (bottom row) excluded critical target regions,
resulting in misclassification (egyptian nightjar). This
indicates that while soft cropping is tolerant to
moderate inaccuracies (e.g., dilation), it remains
sensitive to severe erosion that removes essential
object content.

To quantify this effect, we analyzed classification

Alpha mask

—  Scorpionfish [v]

Dilate I

—  Scorpionfish [v]

— Egyptian nightjar [X]

Fig. 7 Classification result with erroneous segmentation predictions.
Left: input image. Center: dilated, original, and eroded masks. Right:
corresponding classification results. The dilated and original masks
retain the target object (scorpionfish) and lead to correct classification.
The eroded mask loses key target regions, causing misclassification
(egyptian nightjar).

Segmentation quality vs. classification accuracy
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Fig. 8 Classification accuracy for varying degrees of mask erosion (-)
and dilation (+). Classification accuracy degrades significantly when

the mask is severely eroded, while it remains relatively stable with
moderate dilation.

accuracy for various degrees of mask erosion and
dilation. See Fig. 8. Accuracy peaks with the original
predicted mask. Performance remains stable under
moderate dilation but declines sharply with severe
erosion. These results confirm that the soft prior mask
ensures reliable classification as long as key target
regions are preserved, with significant degradation
of accuracy when the mask undergoes substantial
structural loss.

4.8.7 Contribution of boundary refinement and soft
prior

We further investigated the contribution of the

proposed edge enhancement module (EDE) and the

two-stage pipeline by conducting an interpretability

analysis. Specifically, instead of merely verifying

whether they improve performance, we visualized
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and compared the segmentation results with and
without EDE, as well as the classification outcomes
from single-stage and two-stage pipelines, in order
to better reveal how these components influence the
decision process.

As Fig. 9 shows, segmentation masks predicted with
the EDE module exhibit sharper and more accurate
boundaries compared to those without it.

Figure 10 visualizes classification results with and

w/ EDE

w/o EDE

Fig. 9 Predicted segmentation masks with and without the EDE
module.

Scorpionfish [gt] Scorpionfish [v'] Crocodilefish [x]

Fig. 10 Effect of the first-stage soft prior mask on classification. [V/]
indicates correct prediction, and [X] denotes an incorrect one.

GT

Baseline

without the soft prior mask. Without the mask (w/o),
classifying the full image leads to a misclassification as
a crocodilefish. With the mask (w/), the soft cropping
strategy focuses the model on the target region,
enabling correct recognition of the scorpionfish.

4.8.8 Effects of choices on segmentation

We present visual results to illustrate the benefits
of our proposed modules in both segmentation and
classification. Figure 11 presents results for the
baseline, CMA only, EDE only, and the full model
(CMA + EDE), alongside the ground truth. The
baseline fails to accurately localize and delineate
the camouflaged target, producing incomplete or
noisy masks. Incorporating CMA enhances semantic
focus by better identifying the target region, while
EDE improves boundary quality, yielding sharper and
more continuous contours. Our complete framework,
combining CMA and EDE, produces results most
consistent with the ground truth, confirming their
complementary contributions.

4.8.9 Choice of classification strategy

Figure 12 compares three classification strategies: full-
image, hard crop, and our proposed soft crop. The full-
image approach suffers from background distractions,
often leading to misclassification. Hard cropping

+ CMA

+EDE Ours

Fig. 11 Contribution of CMA and EDE: results for the baseline, CMA only, EDE only, and the full model compared to the ground truth.

Hard crop Soft crop

Pred: méth []

Pred: cicada [X]

Fig. 12 Comparison of classification strategies: full-image, hard crop, and our proposed soft crop. [/] indicates correct prediction, and [X]

denotes an incorrect one.
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introduces a domain gap, as CLIP [11] is pre-trained
on full images. By directly cropping around the mask,
it discards useful contextual information and may
retain irrelevant regions, thereby distorting image
structure and reducing classification accuracy. In
contrast, our soft cropping strategy preserves global
context while emphasizing the target region, enabling
accurate recognition without disrupting CLIP’s pre-
training assumptions.

4.8.10 Attention and edge feature visualizations

We provide visualizations in Fig. 13 to highlight the
effects of CMA and EDE.

The attention map in Fig. 13(b) is derived from the
cross-attention between semantic condition prompts
and SAM [16] image features within CMA. Tt clearly
focuses on the camouflaged target while suppressing
irrelevant background textures, thereby enhancing
semantic focus under low contrast conditions.

For EDE, the visualization in Fig. 13(c) corresponds
to the edge-related feature map Xgysion in Eq. (8).
After channel aggregation, this feature emphasizes
thin, object
boundaries, while maintaining low responses in the
background. This demonstrates improved boundary

continuous contours aligned with

quality prior to edge prediction.
4.4 Cross-domain generalization

To test the generalizability of the proposed method,
we extended our experiments to two downstream
tasks: (i) medical polyp segmentation using the Kvasir
[59] dataset, and (ii) agricultural concealed crop
detection using the ACOD-12K [60] dataset. This
evaluation provided a rigorous examination of our
method’s adaptability and practical utility beyond
the scope of the primary benchmark setting.

4.4.1 Dataset overview

The Kvasir [59] dataset is a widely used benchmark
for polyp segmentation in gastrointestinal endoscopy.

(a) (¢)

Fig. 13 Visualization of CMA and EDE: (a) input image containing
a low-contrast, camouflaged target, (b) cross-attention map between
semantic condition prompts and SAM image features in CMA,
(c) channel-aggregated edge feature map from EDE.

(b)

It contains high-resolution colonoscopy images with
pixel-accurate polyp annotations. It poses challenges
due to substantial variations in polyp size, shape, and
texture.

The ACOD-12K [60] dataset is a large-scale
agricultural dataset for concealed crop detection
in dense, real-world greenhouse environments. It
contains images in which crops are capture crops
partially or fully occluded by leaves, stems, and
support structures, with complex backgrounds,
variable lighting, and subtle visual cues—making
detection highly challenging.

4.4.2  Ezxperimental setup

To evaluate our method in downstream tasks, we

fine-tuned our model for two scenarios:

(1) Medical domain: Following Ref. [61], our model
was fine-tuned on the Kvasir [59] dataset.

(2) Agricultural domain: Following Ref. [60], our
model was fine-tuned on the ACOD-12K [60]
dataset.

Example segmentation results are visualized in
Fig. 14 and quantitative comparisons are summarized
in Tables 12 and 13. Our method achieved the best
results on both datasets compared to strong baselines
and state-of-the-art methods. These results validate
the robustness and practical applicability of our
approach across diverse real-world domains.

Kvasir %

GT Ours

L

Input GT Ours

Fig. 14 Qualitative comparison on the Kvasir (medical) and ACOD-
12K (agricultural) datasets showing original images, ground truth
masks, and our predicted segmentation.

Table 12 Quantitative comparison on the Kvasir medical polyp
segmentation dataset. Bold values indicate best results, and underlined
values indicate second-best results

Model wFm 1 Sm 1 Emax 1 MAE |
U-Net 0.7940 0.8580 0.8930 0.0550
U-Net++ 0.8080 0.8620 0.9100 0.0480
SFA 0.6700 0.7820 0.8490 0.0750
Ours 0.8551 0.9057 0.9223 0.0370
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Table 13 Quantitative comparison on the ACOD-12K agricultural
concealed crop detection dataset. Bold values indicate the best results,
and underlined values indicate the second-best results

Model Sm 1 wFm 1 Emax 1
SINet 0.7450 0.4740 0.8260
PFNet 0.8050 0.6850 0.9420
ZoomNet 0.8320 0.7470 0.9400
FSPNet 0.7190 0.5260 0.8190
Ours 0.8455 0.8002 0.9625

5 Conclusions

In this paper, we have presented COCUS, a two-
stage framework for OVCOS that explicitly decouples
segmentation and classification. In the first stage,
visual and textual embeddings are extracted using
our fine-tuned CLIP model. These embeddings guide
an adapted SAM with a redesigned mask decoder to
enhance object localization and boundary precision.
In the second stage, the predicted segmentation mask
is fused with the input image to guide the attention
of the model toward the target regions, enabling
region-aware classification without relying on cropped
inputs. Extensive experiments on both OVCOS and
COS benchmarks show that our method outperforms
existing open-vocabulary segmentation methods. The
adapted SAM also achieves superior results on the
COS benchmarks. These experiments confirm the
benefits of our two-stage framework and edge-aware
enhancements in complex camouflage scenarios.

Availability of data and materials

We provide links to the code, models, and datasets

used in our experiments to facilitate reproducibility

and further research:

e The code and models of this paper are available at
https://github.com/intcomp/camouflaged-vim

e The OVCamo dataset can be accessed at https://
github.com/lartpang/0VCamo

e The COD10K dataset is available at https://
dengpingfan.github.io/pages/COD.html

e The CAMO dataset can be found at https://sites.
google.com/view/ltnghia/research/camo

e The NC4K dataset is accessible at https://
github.com/JingZhang617/COD-Rank-Localize-
and-Segment

Competing interests

The authors have no competing interests to declare.

Available on

N % N
B ¥4 2 0k |EEE Xplores

Tsinghua University Press

Funding

This work was partially supported by the National
Natural Science Foundation of China (62372284,
62476143), the National Key Laboratory of Science
and Technology on Space-Born Intelligent Information
Processing (TJ-02-22-01), and the Pioneer R&D
Program of Zhejiang Province (2024C01024).

Author contributions

K.Z. conceived the study and led the implementation.
W.Y. contributed to implementation, experiments,
and formal analysis. Z.W. and G.L. assisted with
data processing and result interpretation. X.Z.
supervised the project and revised the manuscript.
D.F. contributed to methodology and evaluation
design. D.Z. provided overall supervision and strategic
guidance. All authors reviewed and approved the final
manuscript.

References

[1] Pang, Y.; Zhao, X.; Zuo, J.; Zhang, L.; Lu, H.
Open-vocabulary camouflaged object segmentation.
In: Computer Vision — ECCV 202/. Lecture Notes in
Computer Science, Vol. 15105. Leonardis, A.; Ricci, E.;
Roth, S.; Russakovsky, O.; Sattler, T.; Varol, G. Eds.
Springer Cham, 476-495, 2025.

[2] Cheng, B A.; Kirillov,
classification is not all you need for semantic
segmentation. arXiv preprint arXiv:2107.06278, 2021.

[3] Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez,
J. M.; Luo, P. SegFormer: Simple and efficient design

Schwing, A. Per-pixel

for semantic segmentation with Transformers. arXiv
preprint arXiv:2105.15203, 2021.

[4] Chen, L. C.; Zhu, Y.; Papandreou, G.; Schroff, F.;
Adam, H. Encoder-decoder with atrous separable
convolution for semantic image segmentation. In:
Computer Vision — ECCV 2018. Lecture Notes in
Computer Science, Vol. 11211. Ferrari, V.; Hebert, M.;
Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 833—
851, 2018.

[5] Fan, D. P.; Ji, G. P.; Cheng, M. M.; Shao, L. Concealed
object detection. IEFEE Transactions on Pattern
Analysis and Machine Intelligence Vol. 44, No. 10, 6024—
6042, 2022.

[6] Liu, L.; Wang, R.; Xie, C.; Yang, P.; Wang, F.; Sudirman,
S.; Liu, W. PestNet: An end-to-end deep learning
approach for large-scale multi-class pest detection and
classification. IEEE Access Vol. 7, 456301-45312, 2019.



Open-vocabulary camouflaged object segmentation with cascaded vision language models 17

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Cho, S.; Shin, H.; Hong, S.; Arnab, A.; Seo, P.
H.; Kim, S. CAT-seg: Cost aggregation for open-
vocabulary semantic segmentation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 4113-4123, 2024.

Li, B.; Weinberger, K. Q.; Belongie, S.; Koltun, V.;
Ranftl, R. Language-driven semantic segmentation.
arXiv preprint arXiv:2201.03546, 2022.

Bucher, M.; Vu, T. H.; Cord, M.; Perez, P. Zero-shot
semantic segmentation. In: Proceedings of the 33rd
Conference on Neural Information Processing Systems,
466-477, 2019.

Xian, Y.; Choudhury, S.; He, Y.; Schiele, B.; Akata,
Z. Semantic projection network for zero- and few-
label semantic segmentation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 8248-8257, 2020.

Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh,
G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.;
Clark, J.; et al. Learning transferable visual models
from natural language supervision. arXiv preprint
arXiv:2103.00020, 2021.

Xu, M.; Zhang, Z.; Wei, F.; Lin, Y.; Cao, Y.; Hu, H.;
Bai, X. A simple baseline for open-vocabulary semantic
segmentation with pre-trained vision-language model.
In: Computer Vision — ECCV 2022. Lecture Notes in
Computer Science, Vol. 13689. Avidan, S.; Brostow, G.;
Cissé, M.; Farinella, G. M.; Hassner, T. Eds. Springer
Cham, 736-753, 2022.

Ding, J.; Xue, N.; Xia, G.; Dai, D. Decoupling
zero-shot semantic segmentation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 11573-11582, 2022.

Ding, Z.; Wang, J.; Tu, Z. Open-vocabulary universal
image segmentation with MaskCLIP. arXiv preprint
arXiv:2208.08984, 2022.

Liang, F.; Wu, B.; Dai, X.; Li, K.; Zhao, Y.; Zhang,
H.; Zhang, P.; Vajda, P.; Marculescu, D. Open-
vocabulary semantic segmentation with mask-adapted
CLIP. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 7061-7070,
2023.

Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland,
C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A. C.;
Lo, W. Y.; et al. Segment anything. In: Proceedings of
the IEEE/CVF International Conference on Computer
Vision, 4015-4026, 2023.

Zhang, P.; Yan, T.; Liu, Y.; Lu, H. Fantastic
animals and where to find them: Segment any
marine animal with dual SAM. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2578-2587, 2024.

[18]

[19]

[20]

[25]

[26]

[27]

Yan, T.; Wan, Z.; Deng, X.; Zhang, P.; Liu, Y.
Lu, H. MAS-SAM: Segment any marine animal with
aggregated features. In: Proceedings of the 33rd
Conference on Artificial Intelligence, 68866894, 2024.
Khattak, M. U.; Rasheed, H.; Maaz, M.; Khan, S.;
Khan, F. S. MaPLe: Multi-modal prompt learning.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 19113—
19122, 2023.

Zang, Y.; Li, W.; Zhou, K.; Huang, C.; Loy, C. C.
Open-vocabulary DETR with conditional matching.
In: Computer Vision — ECCV 2022. Lecture Notes in
Computer Science, Vol. 13669. Avidan, S.; Brostow, G.;
Cissé, M.; Farinella, G. M.; Hassner, T. Eds. Springer
Cham, 106-122, 2022.

Gu, X.; Lin, T. Y.; Kuo, W.; Cui, Y. Open-vocabulary
object detection via vision and language knowledge
distillation. In: Proceedings of the International
Conference on Learning Representations, 2021.
Zareian, A.; Dela Rosa, K.; Hu, D. H.; Chang, S.
F. Open-vocabulary object detection using captions.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 14388—
14397, 2021.

Li, S.; Li, M.; Wang, P.; Zhang, L. OpenSD: Unified
open-vocabulary segmentation and detection. arXiv
preprint arXiv:2312.06703, 2023.

Xu, M.; Zhang, Z.; Wei, F.; Hu, H.; Bai, X. Side adapter
network for open-vocabulary semantic segmentation.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2945-2954,
2023.

Yu, Q.; He, J.; Deng, X.; Shen, X.; Chen, L. C.
Convolutions die hard: Open-vocabulary segmentation
with single frozen convolutional CLIP. arXiv preprint
arXiv:2308.02487, 2023.

Luo, H.; Bao, J.; Wu, Y.; He, X.; Li, T. SegCLIP:
Patch aggregation with learnable centers for open-
vocabulary semantic segmentation. arXiv preprint
arXiv:2211.14813, 2022.

Xu, J.; Hou, J.; Zhang, Y.; Feng, R.; Wang, Y
Qiao, Y.; Xie, W. Learning open-vocabulary semantic
segmentation models from natural language supervision.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2935-2944,
2023.

Sun, Z.; Fang, Y.; Wu, T.; Zhang, P.; Zang, Y.; Kong,
S.; Xiong, Y.; Lin, D.; Wang, J. Alpha-CLIP: A CLIP
model focusing on wherever you want. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 13019-13029, 2024.

Available on

(%2 % Mt [EEE Xplore®

Tsinghua University Press




18

K. Zhao, W. Yuan, Z. Wang, et al.

[29]

[30]

31]

[32

[33]

[34]

[35]

[36]

[37]

[39]

[40]

Zhou, K.; Yang, J.; Loy, C. C.; Liu, Z. Learning
to prompt for vision-language models. International
Journal of Computer Vision Vol. 130, No. 9, 2337-2348,
2022.

Zhou, K.; Yang, J.; Loy, C. C.; Liu, Z. Conditional
prompt learning for vision-language models. In:
of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 16795—
16804, 2022.

Bahng, H.; Jahanian, A.; Sankaranarayanan, S.; Isola,

Proceedings

P. Exploring visual prompts for adapting large-scale
models. arXiv preprint arXiv:2203.17274, 2022.
Khattak, M. U.; Wasim, S. T.; Naseer, M.; Khan, S.;
Yang, M. H.; Khan, F. S. Self-regulating prompts:
Foundational model adaptation without forgetting.
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 15144-15154, 2024.
Yang, L.; Wang, Y.; Li, X.; Wang, X.; Yang, J. Fine-
grained visual prompting. In: Proceedings of the 37th
Conference on Neural Information Processing Systems,
24993-25006, 2023.

Borji, A.; Cheng, M. M.; Hou, Q.; Jiang, H.; Li,
J. Salient object detection: A survey. Computational
Visual Media Vol. 5, No. 2, 117-150, 2019.

Y.; Zhao, X L.; Lu, H. Multi-
scale interactive network for salient object detection.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 9410-9419,
2020.

Ji, W.; Yan, G.; Li, J.; Piao, Y.; Yao, S.; Zhang,
M.; Cheng, L.; Lu, H. DMRA: Depth-induced multi-

scale recurrent attention network for RGB-D saliency

Pang, Zhang,

detection. IEEFE Transactions on Image Processing Vol.
31, 2321-2336, 2022.

Liu, J. J.; Hou, Q.; Liu, Z. A.; Cheng, M. M. PoolNet+:
Exploring the potential of pooling for salient object
detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence Vol. 45, No. 1, 887-904, 2023.
Li, J.; Ji, W.; Zhang, M.; Piao, Y.; Lu, H.; Cheng,
L. Delving into calibrated depth for accurate RGB-
D salient object detection. International Journal of
Computer Vision Vol. 131, No. 4, 855-876, 2023.

Ji, W.; Li, J.; Bian, C.; Zhou, Z.; Zhao, J.; Yuille, A.;
Cheng, L. Multispectral video semantic segmentation:
A benchmark dataset and baseline. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 1094-1104, 2023.

Zhao, X.; Pang, Y.; Yang, J.; Zhang, L.; Lu, H. Multi-
source fusion and automatic predictor selection for
zero-shot video object segmentation. In: Proceedings of
the 29th ACM International Conference on Multimedia,
2645-2653, 2021.

Available on

N % N
(12 % Wt |EEE Xplore-

Tsinghua University Press

[41]

[42]

[43]

[44]

[46]

[47]

[48]

[49]

[50]

[51]

Fan, D. P.; Ji; G. P,; Sun, G.; Cheng, M. M.; Shen, J;
Shao, L. Camouflaged object detection. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2774-2784, 2020.

Lv, Y.; Zhang, J.; Dai, Y.; Li, A.; Liu, B.; Barnes,
N.; Fan, D. P. Simultaneously localize, segment and
rank the camouflaged objects. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 11586-11596, 2021.

Mei, H.; Ji, G. P.; Wei, Z.; Yang, X.; Wei, X.; Fan, D.
P. Camouflaged object segmentation with distraction
mining. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 8768—
8777, 2021.

Pang, Y.; Zhao, X.; Xiang, T. Z.; Zhang, L.; Lu,
H. Zoom in and out: A mixed-scale triplet network
for camouflaged object detection. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2150-2160, 2022.

Jia, Q.; Yao, S.; Liu, Y.; Fan, X.; Liu, R.; Luo, Z.
Segment, magnify and reiterate: Detecting camouflaged
objects the hard way. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 4703-4712, 2022.

Ji, G. P.; Fan, D. P.; Chou, Y. C.; Dai, D.; Liniger,
A.; Van Gool, L. Deep gradient learning for efficient
camouflaged object detection. Machine Intelligence
Research Vol. 20, No. 1, 92-108, 2023.

Le, T. N.; Nguyen, T. V.; Nie, Z.; Tran, M. T
Sugimoto, A. Anabranch network for camouflaged
object segmentation. Computer Vision and Image
Understanding Vol. 184, 45-56, 2019.

Chen, T.; Zhu, L.; Ding, C.; Cao, R.; Wang, Y.;
Zhang, S.; Li, Z.; Sun, L.; Zang, Y.; Mao, P. SAM-
adapter: Adapting segment anything in underperformed
scenes. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, 3359-3367,
2023.

Ma, J.; He, Y.; Li, F.; Han, L.; You, C.; Wang,
B. Segment anything in medical images. Nature
Communications Vol. 15, Article No. 654, 2024.

Zhao, H.; Puig, X.; Zhou, B.; Fidler, S.; Torralba, A.
Open vocabulary scene parsing. In: Proceedings of the
IEEE International Conference on Computer Vision,
2021-2029, 2017.

Xu, J.; Liu, S.; Vahdat, A.; Byeon, W.; Wang, X.;
De Mello, S. Open-vocabulary panoptic segmentation
with text-to-image diffusion models. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2955-2966, 2023.



Open-vocabulary camouflaged object segmentation with cascaded vision language models 19

[52] Yin, B.; Zhang, X.; Fan, D. P.; Jiao, S.; Cheng, M.
M.; Van Gool, L.; Hou, Q. CamoFormer: Masked
separable attention for camouflaged object detection.
IEEE Transactions on Pattern Analysis and Machine
Intelligence Vol. 46, No. 12, 10362-10374, 2024.

[63] De Boer, P. T.; Kroese, D. P.; Mannor, S.; Rubinstein,
R. Y. A tutorial on the cross-entropy method. Annals
of Operations Research Vol. 134, No. 1, 19-67, 2005.

[64] Mattyus, G.; Luo, W.; Urtasun, R. DeepRoadMapper:
Extracting road topology from aerial images. In:
Proceedings of the IEEE International Conference on
Computer Vision, 3458-3466, 2017.

[55] Milletari, F.; Navab, N.; Ahmadi, S. A. V-net: Fully
convolutional neural networks for volumetric medical
image segmentation. In: Proceedings of the 4th
International Conference on 3D Vision, 565-571, 2016.

[56] Cheng, X.; Xiong, H.; Fan, D. P.; Zhong, Y.; Harandi,
M.; Drummond, T.; Ge, Z. Implicit motion handling
for video camouflaged object detection. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 13854-13863, 2022.

[57] Zhu, C.; Chen, L. A survey on open-vocabulary
detection and segmentation: Past, present, and future.
IEEE Transactions on Pattern Analysis and Machine
Intelligence Vol. 46, No. 12, 8954-8975, 2024.

[68] Cherti, M.; Beaumont, R.; Wightman, R.; Wortsman,
M.; Ilharco, G.; Gordon, C.; Schuhmann, C.; Schmidt,
L.; Jitsev, J. Reproducible scaling laws for contrastive
language-image learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2818-2829, 2023.

[59] Pogorelov, K.; Randel, K. R.; Griwodz, C.; Eskeland,
S. L.; de Lange, T.; Johansen, D.; Spampinato, C.;
Dang-Nguyen, D. T.; Lux, M.; Schmidt, P. T.; et al.
KVASIR: A multi-class image dataset for computer
aided gastrointestinal disease detection. In: Proceedings
of the 8th ACM on Multimedia Systems Conference,
164-169, 2017.

[60] Wang, L.; Yang, J.; Zhang, Y.; Wang, F.; Zheng,
F. Depth-aware concealed crop detection in dense
agricultural scenes. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, 17201-17211, 2024.

[61] Fan, D. P.; Ji, G. P.; Zhou, T.; Chen, G.
PraNet: Parallel reverse attention network for polyp
segmentation. In: Medical Image Computing and
Computer Assisted Intervention — MICCAI 2020.
Lecture Notes in Computer, Vol. 12266. Fan, D.-P.;
Ji, G.-P.; Zhou, T.; Chen, G.; Fu, H.; Shen, J.; Shao,
L. Eds. Springer Cham, 263-273, 2020.

Kai Zhao (Member, IEEE) is an associate
professor at the School of Communication
and Information Engineering, Shanghai
University. He previously conducted
postdoctoral research at the University of
California, Los Angeles, and earned his
Ph.D. degree in computer science from
Nankai University in 2020. He received his
B.S. and M.S. degrees from Shanghai University in 2014 and
2017, respectively. His research interests include computer vision,
geometry, and deep learning.

Wubang Yuan received his bachelor
degree in electronic information engineering
{ from the

and Information Engineering, Shanghai

University in 2023. He is currently pursuing
learning, and camouflaged object detection.

School of Communication

a master degree in signal and information
processing in the same school. His research
interests include computer vision, machine

Zheng Wang received his B.E. degree
in communication engineering from
Shanghai University in 2022. He is
£ currently working towards an M.E.
war” | degree in the Key Laboratory of

Specialty Fiber Optics and Optical

Access Networks and Shanghai Institute

wy
- of Advanced Communication and Data

Science, Shanghai University. His research interests include

computer vision and visual generation.

Guanyi Li received his bachelor degree
in computer science and technology
from Zhengzhou University in 2018
and his master degree in computer
technology from Zhengzhou University
; of Light Industry in 2022. He is currently
x pursuing his Ph.D. degree in the Key

Laboratory of Specialty Fiber Optics and
Optical Access Networks and Shanghai Institute of Advanced
Communication and Data Science, Shanghai University. His
research interests include computer vision and camouflaged
object detection.

Xiaoqgiang Zhu is an associate professor
in the School of Communication and
Information Shanghai
University. He received his Ph.D. degree
from the State Key Laboratory of
CAD&CG at Zhejiang University. In
2023, he was a visiting scholar at
the National Centre for Computer
Animation, Bournemouth University, UK. His research

Engineering,

Available on

(1242 8t [EEE Xplore®

Tsinghua University Press




20

K. Zhao, W. Yuan, Z. Wang, et al.

interests include computer graphics and intelligent

information processing.

Deng-Ping Fan (Senior Member, IEEE)
joined Nankai International Advanced
Research  Institute  (SHENZHEN-
FUTIAN) as a faculty member in 2024.
:,- Before he was a full professor and deputy
\/ director of the Media Computing Lab
‘\ . (MCLab) in the College of Computer
- Science, Nankai University, China, and
earlier, he was a postdoctoral researcher with Prof. Luc Van
Gool in the Computer Vision Lab at ETH Zurich. He was
one of the core technical members of the TRACE-Zurich
project on automated driving.

Dan Zeng (Senior Member, IEEE)
received her B.S. degree in electronic
science and technology and her Ph.D.
degree in circuits and systems from the
University of Science and Technology
of China, Hefei. She is a full professor
and the Dean of the Department of
Communication Engineering, Shanghai
University, and directs the Computer Vision and Pattern

Available on

IEEE Xplore®

N EZS L

V5 Tsinghua University Press

Recognition Laboratory. Her main research interests include
computer vision, multimedia analysis, and machine learning.
She currently serves as an associate editor for IEFE
Transactions on Multimedia and IEEE Transactions on
Circuits and Systems for Video Technology, as a TC Member
for IEEE MSA, and as an associate TC Member for IEEE
MMSP.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a

copy of this licence, wvisit http://

creativecommons.org/licenses/by/4.0/.

To submit a manuscript, please go to https://jcvm.org.



