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Abstract

With the development of IoT and mobile devices, cross-device palmprint recog-

nition is becoming an emerging research topic in multimedia for its great applica-

tion potential. Due to the diverse characteristics of different devices, e.g.resolution

or artifacts caused by post-processing, cross-device palmprint recognition re-

mains a challenging problem. In this paper, we make efforts to improve cross-

device palmprint recognition in two aspects: 1) we put forward a novel distribution-

based loss to narrow the representation gap across devices, and 2) we establish

a new cross-device benchmark based on existing palmprint recognition datasets.

Different from many recent studies that only utilize instance-level or pairwise-

level information between devices, the proposed progressive target distribution

loss (PTD loss) uses the distributional information. Moreover, we establish a

progressive target mechanism that will be dynamically updated during training,

making the optimization easier and smoother. The newly established bench-

mark contains more samples and more types of IoT devices than previous

benchmarks, which can facilitate cross-device palmprint research. Extensive

comparisons on several benchmarks reveal that: 1) our method outperforms

other cross-device biometric recognition approaches significantly; 2) our method

presents superior performance compared to SOTA competitors on several gen-

eral palmprint recognition benchmarks; Code and data are openly available at
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1. Introduction

Recently, the palm payment device being developed by Amazon [1] has at-

tracted people’s attention. Compared with card payments, palm payments will

significantly reduce the waiting time and bring great convenience to people. And

the safety of the palmprint recognition system has been confirmed by numerous5

previous studies [2]. A successful palm payment system will revolutionize the

way we do our shopping and significantly impact our daily life in the coming

years.

During the last decade, palmprint recognition has switched from early con-

tact and restricted images to unrestricted contactless images. And recently,10

some studies deal with images taken by mobile phones, such as MPD [3] and

XJTU-UP [4]. However, besides smartphones, the devices used in payment

application scenarios are diverse and include various IoT devices, such as the

aforementioned AmazonOne [1]. Cross-device registration and identification im-

prove payment convenience more effectively. For instance, customers can use15

their smartphones to register at home and use IoT devices to complete iden-

tification and payment at stores. Yet, the heterogeneous visual characteristics

between images across devices pose a huge challenge. Existing methods, such

as ArcPalm [3], do not take into account the situation of domain shift, which

leads to their poor performance in cross-device recognition scenarios.20

As shown in Fig. 1 (a) and (b), pictures taken by different devices vary

greatly in appearance. Consequently, as illustrated in Fig. 1 (c), though be-

longing to the same identity, images from different devices present large intra-

class variance in the embedding space. This will largely affect the recognition

performance on unseen data. To alleviate this problem, we propose a novel loss25

function, namely Progressive Target Distribution loss (PTD loss), that mini-
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Figure 1: Top: Images taken by mobile phones (a) and IoT devices(b) are diverse in ap-

pearance. Bottom: TSNE of palm features extracted by ArcPalm [3] (c) and our proposed

method (d). Our method can shorten the distance between samples of the same identity but

different devices, e.g.AMobile and AIoT

mizes the distributional gap between cross-device and within-device similari-

ties. Specifically, we estimate the histogram of similarity scores and minimize

the distributional distance between the estimated histogram and target distri-

bution. Our innovation is reflected in our proposed ‘progress target’. Instead30

of setting up a fixed target, we propose the ‘progressive target’ that adjusts to

each individual mini-batch.

Additionally, there are not sufficient datasets for cross-device RGB palm-

print recognition. We collect a new cross-device palmprint recognition bench-

mark based on existing palmprint recognition datasets. The newly collected35

dataset consists of RGB images from different devices, e.g.IoT devices, and mo-

bile phones, and it is larger than existing datasets. The main contributions of

this work are summarized below.

• We propose a novel and simple loss term to narrow the cross-device gap

at the pairwise level. we propose to use a ‘progressive target’ to guide the40

3



estimated histogram.

• We established a new cross-device palmprint benchmark to improve the

study of cross-device RGB palmprint recognition based on existing datasets.

• Extensive experiments on the newly collected dataset and several existing

palmprint recognition datasets verified the effectiveness of the proposed45

method.

We also tested the proposed method on cross-device person re-identification

and the results are also in favor of our method.

The remaining of this paper is organized as follows. In Sect. 2, related

studies are reviewed. Sect. 3 states the details of the proposed PTD loss.50

Experimental results and dataset details are presented in Sect. 4. Finally, Sect.

5 concludes the paper.

2. Related Work

2.1. Traditional Palmprint Recognition Methods.

Traditional palmprint recognition methods can be roughly divided into two55

categories: 1) holistic-based and 2) local descriptor based. In holistic-based

methods, features are extracted from the whole image and then projected to a

lattent space of lower-dimensional to make it more compact and discriminative.

Supervised and unsupervised projection methods such as Principle Component

Analysis (PCA) [5], Independent Component Analysis (ICA) [6], Mix Factor60

Analysis (MFA) [7], and Linear Discriminant Analysis (LDA) [8] are used for

dimension reduction. Gui et al. [9] use Locality Preserving Projection (LPP)

to preserve local structures of palmprints. Hu et al. [10] extend LPP to 2D-

LPP. Holistic-based methods often suffer from degradation caused by distortion,

illumination, and noise. To overcome these issues, some studies try to transform65

the data from image domain to another domain. Frequency [11] and Cosine [12]

transforms are commonly used to overcome these degradations.
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Local descriptor based methods extract local features of the image and then

construct a global description by feature fusion. The coding-based methods

have the advantages of small storage space and fast processing speed, but the70

accuracy is slightly inferior. Earlier in [13], Zhang et al. designed the classic

competitive code (CompCode) by using multiple 2-D Gabor filters to extract

orientation information. FastCompCode [14] proposes a binary code for effective

representation and matching. Li et al. [15] extract the local micro-structure

tetra patterns. Jia et al. [16] propose the robust line orientation code (RLOC)75

[16]. Wu et al. [17] extract local SIFT features and match palm images with

RANSAC. Qian et al. [18] extract histogram of orientations.

2.2. Deep Learning for Palmprint Recognition.

Many recent studies use deep learning as feature extractor for palmprint

recognition. In general, these deep learning based methods belong to holistic-80

based palmprint recognition. Dian et al. [19] first use the AlexNet as the feature

extractor and match palm images with Hausdorff distance. Svoboda et al. [20]

propose a new loss function related to the d-prime index. Shao et al. [21] use

deep metric learning to obtain discriminative features. Zhao et al. [22] design a

novel CNN architecture for generic palmprint recognition in numerous scenarios.85

Recently, margin-based loss functions have been proven to be effective for face

recognition. The large margin loss [23] and additive angular margin loss [3] are

introduced to palmprint recognition. Fei et al. [24] propose a compact CNN-

based surface representation for 3D palmprint recognition. Different from these

studies that introduce new architectures or loss functions, our proposed method90

focuses on synthesizing training data for deep palmprint recognition.

3. Proposed Method

As mentioned before, the heterogeneous visual characteristics existing be-

tween cross-device images pose a huge challenge. According to Fig. 1, the

selected baseline ArcPalm [3] performs poorly in cross-device recognition sce-95
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Figure 2: Overall framework of the target distribution loss. During training, each mini-batch

contains M IDs, and each ID contains N samples. Colors (red and blue) represent embeddings

of different devices and shapes represent different identities.

narios. To solve the domain shift problem caused by heterogeneous image char-

acteristics, we propose a PTD loss based on the baseline ArcPalm, which im-

proves the cross-device recognition performance of the model by expanding the

difference between the intra-class and inter-class similarity. The overall frame-

work of the PTD loss is shown in Fig. 2. In this section, we will expand the100

principle and details of the PTD loss.

3.1. From Pairwise Similarity to Histogram

Pairwise Similarity. Let I be an arbitrary input image and F be the feature

extractor, a convolutional neural network in our case. We denote the extracted

features as X = F(I), for simplicity we use X to represent a sample. The

similarity between a pair of samples Xi, Xj is defined as their cosine distance

in the embedding space:

si,j = cos(Xi, Xj) =
Xi ·Xj

||Xi|| · ||Xj ||
.

Positive and Negative Pairs. Given an arbitrary pair of samples 〈Xi, Xj〉
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and we denote their identity label as yi, yj . A pair is referred to as the positive

pair if yi = yj and otherwise the negative pair. Given a batch of samples105

B = {Xi, X2, ..., XN} where N is the batch size, we construct positive pairs and

negative pairs according to their identity labels:

S+ =
{
〈Xi, Xj〉 | ∀Xi, Xj,i 6=j ∈ B, yi = yj

}
S− =

{
〈Xi, Xj〉 | ∀Xi, Xj,i 6=j ∈ B, yi 6= yj

}
,

(1)

where S+ and S− are the collections of positive/negative pairs. Note that

the construction of positive pairs requires the sophisticated design of the batch

sampler because if randomly sampled, there may be no positive pairs. More110

information about the batch sampler will be detailed in the experiments.

Cross-device and Within-device Pairs. Our proposed loss function can

be used to improve cross-device palmprint recognition by pulling cross-device

similarity of positive pairs. To this end, we have to build within-device and

cross-device positive pairs. Given arbitrary sample X with identity label y, we115

denote its device as d. Then within-device and cross-device positive pairs are

defined as:

S+X =
{
∀〈Xi, Xj〉 ∈ S+, di = dj

}
S+7 =

{
∀〈Xi, Xj〉 ∈ S+, di 6= dj

}
S−X =

{
∀〈Xi, Xj〉 ∈ S−, di = dj

}
S−7 =

{
∀〈Xi, Xj〉 ∈ S−, di 6= dj

}
,

(2)

where SX represents the collection of within-device pairs and S7 is the collection

of cross-device pairs.

Construct Histograms. Next, we construct the histogram of positive and neg-120

ative pairs according to their similarities. The ordinary discrete histogram is not

decomposable and thus cannot be used in the CNN architecture for end-to-end

optimization. Ustinova et al. [25] propose the histogram loss that builds decom-

posable histograms by interpolating between discrete values. Take positive pairs

as an example, let H+ ∈ RR be the histogram with nodes: t1 = −1, ..., tR = 1.125
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Where R is the dimension of the resulting histogram and the interval between

two nodes is 2
R−1 . The r-th node of the histogram is:

h+r =
1

|S+|
∑

〈Xi,Xj〉∈S+

δi,j,r. (3)

where

δi,j,r =


(sij − tr−1)/∆; if sij ∈ [tr−1, tr]

(tr+1 − sij)/∆; if sij ∈ [tr−1, tr]

0; othewise.

(4)

Eq. (4) linearly interpolates between two nodes.

The histogram of negative similarities can be calculated analogously. We130

denote the positive/negative histogram as H+,H− ∈ RR.

Algorithm 1: Algorithmic outline of the proposed method.

Input: Model F , initial parameters Θ, learning rate α.

while not converged do
Random select a mini-batch B;

Collect sample pairs according to Eq. (1) or Eq. (2);

Forward pass F(B) to get features;

Construct histogram H according to Eq. (3);

Get target distribution according to Eq. (6).

Construct target distribution T using µ̂, σ̂;

Compute loss according to Eq. (7)

Backward to get gradient ∆Θ;

Update Θ by: Θ := Θ− α ·∆Θ

end

Output: Θ

Though the construction of histograms is inspired by [25], our proposed loss

function is quite different from [25]: [25] tries to shrink the intersection between

positive and negative histograms, our proposed method explicitly setup the

target distribution for estimated histograms. Moreover, we propose progressive135

targets to smooth the ease the optimization.

8



3.2. Distributional loss with Progressive Targets

Distributional Losses. After the positive/negative histograms are constructed,

we set target distributions for them and then minimize the distance between his-

tograms and their respective targets under specific metrics, e.g.Kullback–Leibler140

divergence.

Let T be the target distribution and H be the estimated histogram. Our

method minimizes the divergence between them:

L+
hist = D(H+, T +)

L−hist = D(H−, T −),
(5)

where D(·, ·) is a distance metric on discrete distributions. In our experiments,

we use Kullback–Leibler divergence to measure the distributional distances for145

its simplicity.

Progressive Targets. Since the batch statistics vary very significantly during

training, using a fixed target distribution may lead to difficulty in optimization

and unstable results. As illustrated in Fig. 3 (a), when the estimated histogram

is far away from the fixed target, the intersection of their support sets is nearly150

empty. Computing KL divergence under such conditions is an ill-posed problem.

To avoid such a situation and make the training procedure smooth, we propose

the progressive target in the distribution-based loss.

Fig. 6 presents the similarity distributions of a single device dataset, PolyU,

and the CrossDevice-A dataset. The similarities roughly follow a gaussian dis-155

tribution. Therefore, we define the target histogram as a gaussian distribution

with µ and σ differ a little bit from the estimated histograms. Specifically, let

µ, σ be the mean and variance of the estimated histogram, the mean and the

variance of its target distribution are given by:

µ̂ =

µ+ ∆µ, if H+

µ−∆µ, if H−

σ̂ = µ−∆σ,

(6)
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where ∆µ,∆σ are small delta values.160
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Figure 3: Left: fixed distributional targets; Right: our proposed progressive targets. Top:

Batch 1, Bottom: Batch 2.

Examples of the estimated histogram and target distribution can be found

in Fig. 3 (b)&(d).

Total loss. In general, the final loss function consists of the positive histogram

loss pull positive pairs, the negative histogram loss to push negative pairs, and

the ArcFace for classification. In addition to the aforementioned terms, we

add the mean loss to explicitly enlarge the average a similar gap between posi-

tive/negative pairs:

Lmean = mean(H+)−mean(H−)

The total loss in our method can be formulated as:

L = α(L+
hist + L−hist) + βLmean + LArcFace, (7)

where α, β are balance factors.

The overall pipeline of the proposed method is summarized in line 1.165

4. Cross Device Palm Datasets

To the best of our knowledge, no palm dataset is dedicated to cross-device

RGB palmprint recognition. Here ‘cross-device’ refers to RGB images that are
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(a) MPD

(b) TCD

(c) MOHI

(d) WEHI

Figure 4: Example images of the four source datasets. Each column represents images of the

same identity taken by diverse devices.

taken by sensors, e.g.digital cameras, mobile phone, IoT devices et al.. To fulfill

the blank, we collect two cross-device palmprint recognition datasets, namely170

CrossDevice-A and CrossDevice-B, for improving the research of cross-device

palm recognition. Example images of the newly collected dataset and their

respective original datasets are shown in Fig. 4.

4.1. Data collection and annotation

CrossDevice-A. Images of CrossDevice-A are from MPD [3] and TCD [26]175

datasets where the images are taken by mobile and IoT devices, respectively.

MPD and TCD datasets contain 400/600 identities and 16,000/12,000 images,

respectively. As part of the identities present in both TCD and MPD, we

construct CrossDevice-A by selecting intersect identities from TCD and MPD.

For each identity in MPD, we select top-5 candidate identities from TCD by

computing the cosine similarity between identities. Formally, we define identity-

level similarity as the average of instance-level similarities:

S(IDm, IDn) =
1

||IDm|| · ||IDn||
∑
i

∑
j

cos(Imi , I
n
j ),

where IDm and IDn are two identities and Imi (Inj ) is the i-th (j-th) image in180

identity IDm (IDn). The instance-level similarity is computed based on features

that are extracted using a pretrained palmprint recognition model.

11



After selecting top-5 most-similar identities, we manually verify and select

the matched identity. The verification and selection is performed by two distinct

human annotators for the sake of accuracy.185

CrossDevice-B. Images of CrossDevice-B are from MOHI [27] and WEHI [27]

datasets. Since the original MOHI and WEHI datasets are designated for hand

shape recognition, therefore, the palmprint is not very clear. Consequently, the

CrossDevice-B dataset is more challenging than CrossDevice-A. The construc-

tion of CrossDevice-B is simpler than that of CrossDevice-B since the identities190

are strictly matched in the two source datasets.

The statistics of the two new datasets and their respective source datasets

are summarized in Tab. 1.

New

Dataset
#IDs #samples

Source

Dataset
#IDs #samples Device

CrossDevice-A 310 18,600
MPD 400 16,000 Mobile

TCD 600 12,000 IoT

CrossDevice-B 200 6,000
MOHI 200 3,000 Mobile

WEHI 200 3,000 WebCam

Table 1: Statistics of two newly collected datasets and their respective source datasets.

5. Experiments

5.1. Implementation details195

Training settings. Our method is implemented using the PyTorch framework.

We first train a base model using the ArcFace loss and then finetune with

ArcFace + PTD loss. The loss weights in PTD loss are set to: α = 2.0, β = 0.05.

The deltas in Eq. (6) are set to ∆µ = 0.07 and ∆σ = 0.05. We train the model

for 26 epochs in both first-round training and finetune. The initial learning rate200

is set to 5e−3 and the learning rate decays with a factor of 0.1 at 14, 18, and

24 epochs. We use the stochastic gradient descent algorithm to optimize the
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Datasets Capture type #images #IDs

CASIA [28] Contactless 5,502 624

IITD [29] Contactless 2,601 460

PolyU [30] Contactless 1,140 114

TCD [26] Contactless 12,000 600

MPD [3] Smartphones 16,000 400

Table 2: Datasets used in our experiments for general palmprint recognition.

model, the movement is set to 0.9 and weight-decay is set to 5e−4. For more

implementation details, please visit https://kaizhao.net/palmprint.

Datasets. We test our proposed method as well as competitors on CASIA [28],205

IITD [29], PolyU [30], TCD [26], MPD [3] and our newly collected datasets.

Unless otherwise stated, we use the 5-fold cross-validation where 4/5 of images

are used for training and others for testing. The statistics of these datasets are

summarized in Tab. 1 and Sec. 5.1.

ROI Extraction. Given a palm image, we first detect two landmarks and then210

crop the center area of the palm according to the landmarks. Fig. 5 illustrates

the landmarks (A and B) and ROI of the left hand. As shown in Fig. 5, we use

the intersection of the index finger and little finger as the first landmark (A),

and the intersection of the ring finger and middle finger as the second landmark

(B). The landmarks are detected with a YOLOv3-based detector.215

Network Architecture. Following the common practice of many previous

studies [31], we use the Inception-ResNet (also known as Inception-v3) network

as our backbone. Specifically, we use its 50 layer variant for the compromise

between efficiency and performance, we will refer to the backbone network as

‘IR50’ for short.220

Besides IR50, we took into account the limitations of computing power and

speed requirements in some scenarios and selected MobileFaceNet [32] as Back-
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Figure 5: ROI extraction of a left hand. We first detect two key points (green dots) A and

B and then set up the coordinates where the x-axis is the line across A and B, and the y-axis

is perpendicular. The ROI is a square on the upper half of y-axis.

bone to complete a series of experiments. In our experiments, MobileFaceNet

was abbreviated as ‘MobileNet’.

We use the state-of-the-art loss function for face recognition, ArcFace [33],225

as the classification loss.

Evaluation protocol. We evaluate palmprint recognition results in terms of

EER, TPR@FAR, and top-1 accuracy. When evaluating the cross-device setting,

we use images of a device as a query and images of other devices as a gallery.

5.2. Results on General Palmprint Recognition.230

In this section, we evaluated the performance of the baseline models on five

public within-device palmprint datasets, and report it in Table 3 in detail. For

all methods, we conduct 5-fold validation and record the average performance.

Since the evaluation protocol of original papers vary significantly and almost

each paper has its evaluation protocol, we put the results which strictly follow235

the original protocols in the supplementary material.

According to Table 3, the Top-1 Accuracy and EER of the baseline on each

within-device dataset outperform the state-of-the-art methods. It can also be

seen that based on the baseline ArcPalm, PTD can significantly improve per-

formance. In particular, the Top-1 accuracy of the ArcPalm-IR+PTD achieved240
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Methods CASIA IITD PolyU TCD MPD

PalmNet [34] 97.17 /

3.21

97.31 / 3.83 99.95 / 0.39 99.89 / 0.40 91.88 /

6.22

FERNet [35] 97.65 /

0.73

99.61 / 0.76 99.77 / 0.15 98.63 / - - / -

DDBC [36] 96.41 / - 96.44 / - - 98.73 / - - / -

CompCode [13] 79.27 /

1.08

77.79 / 1.39 99.21 / 0.68 - / - - / -

OLOF [37] 73.32 /

1.75

73.26 / 2.09 99.55 / 0.23 - / - - / -

DoN [38] 99.30 /

0.53

99.15 / 0.68 100.00 / 0.22 - / - - / -

C-LMCL [23] - / - - / - 100.00 / 0.13 99.93 / 0.26 - / -

JCLSR [39] 98.94 / - 98.17 / - - / - - / - - / -

ArcPalm-IR50 [3] 98.91 /

0.59

99.85 / 0.47 100.00 / 0.08 99.90 / 0.21 99.18 /

0.81

ArcPalm-IR50 +

PTD
99.85 / 0.37 100.00 / 0.20 100.00 / 0.05 100.00 / 0.04 99.78 / 0.43

Table 3: Top-1 Accuracy/EER (%) of the proposed method compared to other methods on

several general palmprint recognition datasets.
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100% on IITD, PolyU, and TCD, and close to 100% on CASIA and MPD.
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Figure 6: (a) Histogram of positive similarities on single device dataset PolyU (b) Histogram

of positive similarities on dual device dataset CrossDevice-A.

5.3. Results on Cross-device Palmprint Recognition.

Here we test our proposed method on the newly collected cross-device datasets:

CrossDevice-A and CrossDevice-B.

Experimental settings. In the cross-device setting, we collect both cross-245

device positive pairs S−7 and within-device positive pairs S+X, as depicted in Eq. (2).

As illustrated in Fig. 6 (b), the similarity histogram of positive similarities on

cross-device dataset present dual-peak distribution, this reveals that we can

model it with a mixture of Gaussians.

Based on the above intuition, we set up a target for cross-device and within-250

device pairs individually. Let S+7 and S+X be collection of cross-detice positive

similarities and within-device positive similarities. We setup two target distri-

butions T +
X , T +

X for them. The negative similarities S−7 ,S
−
X and their targets

T −X , T −X are defined accordingly. Finally, the L+
hist and L−hist in Eq. (5) are

broken into two parts:255

L+
hist = D(H+

X, T
+
X ) + D(H+

7 , T
+

7 )

L−hist = D(H−X, T
−
X ) + D(H−7 , T

−
7 ).

(8)
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CrossDevice-A CrossDevice-B

Methods Top-1 EER Top-1 EER

PalmNet [34] 84.51 11.60 55.45 34.25

ArcPalm-MB 96.31 2.17 67.96 14.88

ArcPalm-MB+PTD 98.46 1.25 69.72 13.39

ArcPalm-IR50 98.79 1.17 67.63 14.62

ArcPalm-IR50+PTD 99.19 0.95 71.20 13.50

Table 4: Top-1 accuracy and EER (%) of the ArcPalm-based methods under the cross-device

evaluation protocol on CrossDevice-A and CrossDevice-B datasets. IR50 and MB indicate

the IR50 and MobileFaceNet backbones, respectively.

During testing, we use images of one device as the gallery and images of the

other device as registry to evaluate the cross-device recognition performance.

Quantitative evaluations The quantitative evaluation results are reported

in Tab. 4. We compare the proposed method with several recent palmprint

recognition methods such as PalmNet [34] and ArcPalm [3] using MobileNet [40]260

and Inception network [31] as backbone.

For CrossDevice-A, the Top-1 Accuracy of ArcPalm-IR50+PTD and ArcPalm-

MobileNet+PTD are 0.4% and 2.15% higher than ArcPalm-IR50 and ArcPalm-

MobileNet, respectively. While IR50+PTD’s EER and MobileNet’s EER are

0.22% and 0.92% lower.265

As for CrossDevice-B, it can be seen that IR50+PTD’s Top-1 Accuracy is

increased by 3.57%, and its EER is decreased by 1.12%. For MobileNet+PTD,

its Top-1 Accuracy is increased by 1.76%, and its EER is decreased by 1.49%.

We drew the ROC curve of the SOTA method PalmNet [34], ArcPalm [3]-

MobileNet, ArcPalm-MobileNet+PTD, ArcPalm-IR50, and ArcPalm-IR50+PTD270

on the CrossDevice-A dataset. According to Fig. 7, we can see that ArcPalm-

X+PTD outperforms SOTA and its corresponding baseline model, which proves

the effectiveness of our method.
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Figure 7: ROC curv on crossPalm-A

5.4. Results on Cross-dataset Palmprint Recognition

In this experiment, we test the cross-dataset generalization of our method.275

The model is trained on one dataset and evaluated on another dataset. Results

Method Training Test Top-1 EER

C-LMCL [23] TCD PolyU 99.93 0.58

ArcPalm-IR50 TCD PolyU 98.63 0.83

ArcPalm-IR50+PTD TCD PolyU 99.93 0.56

C-LMCL [23] PolyU TCD 98.72 1.46

ArcPalm-IR50 PolyU TCD 97.09 1.74

ArcPalm-IR50+PTD PolyU TCD 98.74 1.43

Table 5: Top-1 Accuracy (%) and EER (%) of the proposed method on cross-dataset recog-

nition

in Sec. 5.4 imply that our method show substantial advantages against the

ArcPalm baseline under the challenging cross-dataset setting.

5.5. Ablation Study

We conduct several ablation experiments to verify the effectiveness of the280

proposed method and test the robustness of our method against hyper-parameters.

All experiments in this section are conducted on the CrossDevice-A dataset.

Effectiveness of each component. We first ablate the effectiveness of each

component in Eq. (7). According to Table Tab. 6, each of our modules can im-

18



prove the performance of the baseline model. Not only that, the Top-1 accuracy285

and EER including the PTD loss of all modules are the best, indicating that

each module is an indispensable part of the PTD loss.

L+
hist L−hist Lmean EER Top-1

7 7 7 96.31 2.17

7 7 X 96.42 1.99

X X 7 97.79 1.30

X X X 98.46 1.25

Table 6: Ablation study of each components in Eq. (7) on the CrossDevice-A dataset.

PTD v.s. fixed targets. In the first experiments, we verify the effectiveness of

the proposed method by comparing the performance of PTD and a counterpart

with a fixed target. According to Tab. 7, PTD outperforms fixed target in terms290

of both Top-1 accuracy and EER. When using within-device distribution as the

target, its performance is not as good as the proposed PTD loss. Therefore, we

believe that the PTD loss target setting is more reasonable and effective. For

the fixed target counterpart, we set up a fixed target for positive/negative pairs,

respectively. We set µ = 0.7, σ = 0.01 for positive pairs and µ = 0, σ = 0.01 for295

negative pairs. Results are in Tab. 7.

Methods Top-1 EER

ArcPalm-MB 96.31 2.17

ArcPalm-MB+Within-device Target ∗ 96.75 1.94

ArcPalm-MB+Fixed Target 97.61 1.79

ArcPalm-MB+PTD 98.46 1.25

Table 7: Aablation study of different target settings on CrossDevice-A (%). MB means using

the MobileFaceNet as backbone.

PTD under different hyper-parameters. Here we report the performance

of PTD under different hyper-parameters, these hyper-parameters are: loss
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Figure 8: Performance (EER) of our method with different hyper-parameters. When tuning

one hyper-parameter, we fix others to the default value.

weights α, β in Eq. (7) and deltas ∆µ,∆σ in Eq. (6). When tuning one

hyper-parameter, we fix others as the default values. The results in Fig. 8 re-300

veal that our method is robust against the choice of loss weights α, β and deltas

∆µ,∆σ.

All Search Indoor Search

Method Rank-1 mAP Rank-1 mAP

PIG [41] 45.10 25.50 52.70 42.70

SIM [42] 57.47 53.75 - -

DDAG [42] 54.75 53.02 61.02 67.98

AGW [43] 47.50 47.65 54.17 59.81

AGW+PTD 60.13 57.42 62.51 70.64

Table 8: Evaluations (%) of PTD loss on SYSU-MM01 [44] dataset.

Visible to Infrared Infrared to Visible

Method Rank-1 mAP Rank-1 mAP

PIG [41] 48.50 49.30 48.10 48.90

SIM [42] 75.29 74.47 78.30 75.24

DDAG [45] 68.06 61.80 69.34 63.46

AGW [43] 70.05 66.37 - -

AGW+PTD 78.73 78.12 79.63 77.84

Table 9: Evaluations (%) of PTD loss on RegDB [46] dataset

5.6. Experiments on Person Re-identification

Person re-identification (ReID) is a similar task which aims to learning dis-

criminative features to identity pedestrians. Recently, many deep learning based305
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ReID methods have been proposed [43, 47, 48]. To further verify the gen-

eralization of our proposed method, we also test our method on cross-device

person re-identification. task. We use the AGW [43] as the baseline to ver-

ify the effectiveness of our method. The experiments on ReID are conducted

on SYSU-MM01 [44] and RegDB [46] datasets. The images of SYSU-MM01310

dataset are captured by RGB cameras under two scenes: indoor and ourdoor.

We evaluate both the all-to-all and the indoor-to-outdoor performance. The

RegDB is a cross-device and cross-modal dataset that the images are captured

by RGB (visible) and infrared cameras. We evaluate all-to-all and the infrared-

to-visible performance on RegDB dataset. The results in Tab. 8 and Tab. 9315

clearly demonstrate that our method consistently improves the performance of

a strong baseline with considerable margins.

6. Conclusion and Future Work

In this paper, we propsoe a new loss function for cross-device palmprint

recognition. Our contributions are summarized as follows. We first reorganized320

a large-scale palm benchmark dataset consists of two subsets. Second, we pro-

pose the progressive target loss (PTD loss) which progressively narrows the gap

between representations of cross-device samples. Extensive experiments have

demonstrated the superior of our method. The proposed dataset will benefit

the research of cross-device palmprint recognition, and the proposed method325

may be also helpful to other biometric recognition tasks, e.g.face recognition.

Though it is effective, our method works in a supervised manner which means

the device labels are required during training, which limits its application to un-

supervised conditions where device labels are unavailable. Besides, our method

brings extra computation to estimate the distribution of sample similarities.330
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